Skip to main content
Log in

From fracture to fragmentation: Discrete element modeling

Complexity of crackling noise and fragmentation phenomena revealed by discrete element simulations

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Discrete element modelling (DEM) is one of the most efficient computational approaches to the fracture processes of heterogeneous materials on mesoscopic scales. From the dynamics of single crack propagation through the statistics of crack ensembles to the rapid fragmentation of materials DEM had a substantial contribution to our understanding over the past decades. Recently, the combination of DEM with other simulation techniques like Finite Element Modelling further extended the field of applicability. In this paper we briefly review the motivations and basic idea behind the DEM approach to cohesive particulate matter and then we give an overview of on-going developments and applications of the method focusing on two fields where recent success has been achieved. We discuss current challenges of this rapidly evolving field and outline possible future perspectives and debates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Herrmann, S. Roux (eds.), Statistical Models for the Fracture of Disordered Media (Elsevier Science Publishers, Amsterdam, 1990)

  2. E. Bouchaud, D. Jeulin, C. Prioul, S. Roux (eds.), Physical Aspects of Fracture (Kluwer Academic Publishers, New York, 2001)

  3. M.J. Alava, P.K.V.V. Nukala, S. Zapperi, Adv. Phys. 55, 349 (2006)

    Article  ADS  Google Scholar 

  4. P.A. Cundall, O.D. Strack, Geotechnique 29, 47 (1979)

    Article  Google Scholar 

  5. M.P. Allen, D.J. Tildesley, Comuter Simulation of Liquids (Oxford University Press, Oxford, 1984)

  6. L.D. Libersky, A.G. Petschek, Lect. Notes Phys. 395, 248 (1990)

    Article  ADS  Google Scholar 

  7. A.T. Zehnder, Fracture Mechanics, Lecture Notes in Applied and Computational Mechanics 62 (Springer, Berlin, 2012)

  8. T. Belytschko, R. Gracie, M. Xu, Concurrent Coupling of Atomistic, Continuum Models, edited by J. Fisch, Multiscale Methods: Bridging the Scales in Science and Engineering (Oxford University Press, Oxford, 2010), p. 93

  9. T. Belytschko, W.K. Liu, B. Moran, Non-linear Finite Elements for Continua and Structures (John Wiley & Sons Inc., New York, 2001)

  10. T. Belytschko, S.P. Xiao, Int. J. Mult. Comp. Engin. 1, 115 (2003)

    Article  Google Scholar 

  11. A. Leonardi, F.K. Wittel, M. Mendoza, H.J. Herrmann, Comp. Part. Mech., 1 (2014)

  12. E. Schlangen, E.J. Garboczi, Engrg. Fract. Mech. 57, 319 (1997)

    Article  Google Scholar 

  13. D. Potyondy, P. Cundall, Int. J. Rock Mech. Min. Sci. 41, 1329 (2004)

    Article  Google Scholar 

  14. G.A. D’Addetta, F. Kun, E. Ramm, H.J. Herrmann, Lect. Notes Phys. 568, 231 (2001)

    Article  ADS  Google Scholar 

  15. G.A. D’Addetta, F. Kun, E. Ramm, Gran. Mat. 4, 77 (2002)

    Article  MATH  Google Scholar 

  16. F. Kun, H.A. Carmona, J.S. Andrade, H.J. Herrmann, Phys. Rev. Lett. 100, 094301 (2008)

    Article  ADS  Google Scholar 

  17. H.A. Carmona, F.K. Wittel, F. Kun, H.J. Herrmann, Phys. Rev. E 77, 051302 (2008)

    Article  ADS  Google Scholar 

  18. T. Pöschel, T. Schwager, Computational Granular Dynamics (Springer, Berlin, 2005)

  19. F. Kun, I. Varga, S. Lennartz-Sassinek, I.G. Main, Phys. Rev. Lett. 112, 065501 (2014)

    Article  ADS  Google Scholar 

  20. F. Kun, I. Varga, S. Lennartz-Sassinek, I.G. Main, Phys. Rev. E 88, 062207 (2013)

    Article  ADS  Google Scholar 

  21. W. Salvat, N. Mariani, G. Barreto, O. Martinez, Catal. Today 107–108, 513 (2005)

    Article  Google Scholar 

  22. K. Bagi, Gran. Mat. 7, 31 (2005)

    Article  MATH  Google Scholar 

  23. J.-F. Jerier, D. Imbault, F.-V. Donze, P. Doremus, Gran. Mat. 11, 43 (2009)

    Article  MATH  Google Scholar 

  24. S. Hentz, F.V. Donze, L. Daudeville, Comput. Struct. 82 2509 (2004)

    Article  Google Scholar 

  25. Y.T. Feng, D.R.J. Owen, Int. J. Numer. Meth. Engng. 56, 699 (2003)

    Article  MATH  Google Scholar 

  26. L. Cui, C. O’Sullivan, Gran. Matt. 5, 135 (2003)

    Article  MATH  Google Scholar 

  27. S. Luding, Gran. Mat. 10, 235 (2008)

    Article  MATH  Google Scholar 

  28. B.K. Mishra, C. Thornton, Int. J. Min. Process. 61, 225 (2001)

    Article  Google Scholar 

  29. M. Stojanova, S. Santucci, L. Vanel, O. Ramos, Phys. Rev. Lett. 112, 115502 (2014)

    Article  ADS  Google Scholar 

  30. P.R. Sammonds, P.G. Meredith, I.G. Main, Nature 359, 228 (1992)

    Article  ADS  Google Scholar 

  31. C.G. Hatton, I.G. Main, P.G. Meredith, J. Struct. Geol. 15, 1485 (1993)

    Article  ADS  Google Scholar 

  32. I. Ojala, B.T. Ngwenya, I.G. Main, S.C. Elphick, J. Geophys. Res. 108, 2268 (2003)

    Article  ADS  Google Scholar 

  33. R.C. Hidalgo, F. Kun, K. Kovács, I. Pagonabarraga, Phys. Rev. E 80, 051108 (2009)

    Article  ADS  Google Scholar 

  34. H.J. Herrmann, F.K. Wittel, F. Kun, Physica A 371, 59 (2006)

    Article  ADS  Google Scholar 

  35. J. Aström, Adv. Phys. 55, 247 (2006)

    Article  ADS  Google Scholar 

  36. D.L. Turcotte, J. Geophys. Res. 91, 1921 (1986)

    Article  ADS  Google Scholar 

  37. M. Khanal, W. Schubert, J. Tomas, Int. J. Miner. Process. 86, 104 (2008)

    Article  Google Scholar 

  38. K.T. Chau, X.X. Wei, R.H.C. Wong, T.X. Yu, Mech. Mater. 32, 543 (2000)

    Article  Google Scholar 

  39. T. Kadono, M. Arakawa, Phys. Rev. E 65, 035107(R) (2002)

    Article  ADS  Google Scholar 

  40. F. Kun, F.K. Wittel, H.J. Herrmann, B.-H. Kröplin, K.-J. Maloy, Phys. Rev. Lett. 96, 025504 (2006)

    Article  ADS  Google Scholar 

  41. J.A. Aström, F. Ouchterlony, R.P. Linna, J. Timonen, Phys. Rev. Lett. 92, 245506 (2004)

    Article  ADS  Google Scholar 

  42. H. Katsuragi, D. Sugino, H. Honjo, Phys. Rev. E 68, 046105 (2003)

    Article  ADS  Google Scholar 

  43. H. Katsuragi, S. Ihara, H. Honjo, Phys. Rev. Lett. 95, 095503 (2005)

    Article  ADS  Google Scholar 

  44. F.K. Wittel, F. Kun, H.J. Herrmann, B.-H. Kroplin, Phys. Rev. Lett. 93, 035504 (2004)

    Article  ADS  Google Scholar 

  45. F. Kun, H.J. Herrmann, Phys. Rev. E 59, 2623 (1999)

    Article  ADS  Google Scholar 

  46. G. Timár, F. Kun, H.A. Carmona, H.J. Herrmann, Phys. Rev. E 86, 016113 (2012)

    Article  ADS  Google Scholar 

  47. N.N. Myagkov, T.A. Shumikhin, Physica A 358, 423 (2005)

    Article  ADS  Google Scholar 

  48. G. Timár, J. Blömer, F. Kun, H.J. Herrmann, Phys. Rev. Lett. 104, 095502 (2010)

    Article  ADS  Google Scholar 

  49. H.A. Carmona, A.V. Guimaraes, J.S. Andrade Jr., I. Nikolakopoulos, F.K. Wittel, H.J. Herrmann (preparation)

  50. E.S.C. Ching, Y.Y. Yiu, K.F. Lo, Physica A 265, 119 (1999)

    Article  ADS  Google Scholar 

  51. N. Sator, S. Mechkov, F. Sausset, Europhys. Lett. 81, 44002 (2008)

    Article  ADS  Google Scholar 

  52. N. Sator, H. Hietala, Int. J. Fract. 163, 101 (2010)

    Article  MATH  Google Scholar 

  53. J.A. Aström, Phys. Rev. E 80, 046113 (2009)

    Article  ADS  Google Scholar 

  54. M.J. Alava, P.K.V.V. Nukala, S. Zapperi, J. Phys. D 42, 214012 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Kun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmona, H., Wittel, F. & Kun, F. From fracture to fragmentation: Discrete element modeling. Eur. Phys. J. Spec. Top. 223, 2369–2382 (2014). https://doi.org/10.1140/epjst/e2014-02270-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2014-02270-3

Keywords

Navigation