Skip to main content
Log in

Computer simulations of charged colloids in alternating electric fields

  • Review
  • Electric Fields
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We briefly review recent theoretical and simulation studies of charged colloidal dispersions in alternating electric fields (AC fields). The response of single colloid to an external field can be characterized by a complex polarizability, which describes the dielectric properties of the colloid and its surrounding electrical double layer. We present computer simulation studies of single spherical colloid, using a coarse-grained mesoscale approach that accounts in full for hydrodynamic and electrostatic interactions as well as for thermal fluctuations. We investigate systematically a number of controlling parameters, such as the amplitude and frequency of the AC-fields. The results are in good agreement with recent theoretical predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W.B. Russel, D.A. Saville, W. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, 1989)

  2. P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry, 3rd edn. (Marcel Dekker, New York, 1997)

  3. J. Kreuter (ed.), Colloidal Drug Delivery Systems (Marcel Dekker, New York, 1994)

  4. M. Grzelczak, J. Vermant, E.M. Furst, L.M. Liz-Marzán, ACS Nano 4, 3591 (2010)

    Google Scholar 

  5. H. Pohl, Dielectrophoresis (Cambridge University Press, Cambridge, 1978)

  6. T.B. Jones, Electrimechanics of Particles (Cambridge University Press, Cambridge, 1995)

  7. M.T. Sullivan, K. Zhao, A.D. Hollingsworth, R.H. Austin, W.B. Russel, P.M. Chaikin, Phys. Rev. Lett. 96, 015703 (2006)

    ADS  Google Scholar 

  8. M.E. Leunissen, M.T. Sullivan, P.M. Chaikin, A. van Blaaderen, J. Chem. Phys. 128, 164508 (2008)

    ADS  Google Scholar 

  9. M.E. Leunissen, A. van Blaaderen, J. Chem. Phys. 128, 164509 (2008)

    ADS  Google Scholar 

  10. N. Green, H. Morgan, J. Milner, J. Biochem. Biophys. Methods 35, 89 (1997)

    Google Scholar 

  11. P.R.C. Gascoyne, J. Vykoukal, Electrophoresis 23, 1973 (2002)

    Google Scholar 

  12. G.H. Markx, R. Pethig, Biotechnol. Bioeng. 45, 337 (1995)

    Google Scholar 

  13. H. Morgan, M. Hughes, N. Green, Biophys. J. 77, 516 (1999)

    Google Scholar 

  14. J. Regtmeier, T.T. Duong, R. Eichhorn, D. Anselmetti, A. Ros, Anal. Chem. 79, 3925 (2007)

    Google Scholar 

  15. A. Yethiraj, A. van Blaaderen, Nature 421, 513 (2003)

    ADS  Google Scholar 

  16. W.D. Ristenpart, I.A. Aksay, D.A. Saville, Phys. Rev. Lett. 90, 128303 (2003)

    ADS  Google Scholar 

  17. S.O. Lumsdon, E.W. Kaler, O.D. Velev, Langmuir 20, 2108 (2004)

    Google Scholar 

  18. J.M. McMullan, N.J. Wagner, Soft Matter 6, 5443 (2010)

    ADS  Google Scholar 

  19. J.M. McMullan, N.J. Wagner, Langmuir 28, 4123 (2012)

    Google Scholar 

  20. P.J. Beltramo, E.M. Furst, Electrophoresis 34, 1000 (2013)

    Google Scholar 

  21. T. Gong, D.W.M. Marr, Langmuir 17, 2301 (2001)

    Google Scholar 

  22. T. Gong, D.T. Wu, D.W.M. Marr, Langmuir 18, 10064 (2002)

    Google Scholar 

  23. P.D. Hoffman, P.S. Sarangapani, Y. Zhu, Langmuir 24, 12164 (2008)

    Google Scholar 

  24. K.D. Hermanson, S.O. Lumsdon, J.P. Williams, E.W. Kaler, O.D. Velev, Science 294, 1082 (2001)

    ADS  Google Scholar 

  25. J.P. Singh, P.P. Lele, F. Nettesheim, N.J. Wagner, E.M. Furst, Phys. Rev. E 79, 050401 (2009)

    ADS  Google Scholar 

  26. K. Kang, J.K. Dhont, Soft Matter 6, 273 (2010)

    ADS  Google Scholar 

  27. K. Kang, J.K. Dhont, Soft Matter 9, 4401 (2013)

    ADS  Google Scholar 

  28. S. Gangwal, O.J. Cayre, O.D. Velev, Langmuir 24, 13312 (2008)

    Google Scholar 

  29. L. Zhang, Y. Zhu, Langmuir 28, 13201 (2012)

    Google Scholar 

  30. J. Maxwell, Electricity and Magnetism, Vol. 1 (Dover, New York, 1954)

  31. K. Wagner, Arch. Electrotech 2, 371 (1914)

    Google Scholar 

  32. C. O’Konski, J. Phys. Chem. 64, 605 (1960)

    Google Scholar 

  33. D.A. Saville, T. Bellini, V. Degiorgio, F. Mantegazza, J. Chem. Phys. 113, 6974 (2000)

    ADS  Google Scholar 

  34. N.G. Green, H. Morgan, J. Phys. Chem. B 103, 41 (1999)

    Google Scholar 

  35. I. Ermolina, H. Morgan, J. Colloid Interface Sci. 285, 419 (2005)

    Google Scholar 

  36. S. Dukhin, V. Shilov, Dielectric phenomena and the double layer in disperse systems and polyelectrolytes (Wiley, New York, 1974)

  37. S.S. Dukhin, Adv. Colloid Interface Sci. 44, 1 (1993)

    Google Scholar 

  38. C. Grosse, V.N. Shilov, J. Phys. Chem. 100, 1771 (1996)

    Google Scholar 

  39. E.J. Hinch, J.D. Sherwood, W.C. Chew, P.N. Sen, J. Chem. Soc., Faraday Trans. 2 80, 535 (1984)

    Google Scholar 

  40. C. Chassagne, D. Bedeaux, G.J.M. Koper, Physica A 317, 321 (2003)

    ADS  Google Scholar 

  41. C. Grosse, J. Phys. Chem. B 113, 8911 (2009)

    Google Scholar 

  42. C. Grosse, J. Phys. Chem. B 113, 11201 (2009)

    Google Scholar 

  43. C. Chassagne, D. Bedeaux, J. Colloid Interface Sci. 326, 240 (2008)

    Google Scholar 

  44. J. Dhont, K. Kang, Eur. Phys. J. E 33, 51 (2010)

    ADS  Google Scholar 

  45. J. Dhont, K. Kang, Eur. Phys. J. E 34, 40 (2011)

    Google Scholar 

  46. E.H.B. DeLacey, L.R. White, J. Chem. Soc., Faraday Trans. 2 77, 2007 (1981)

    Google Scholar 

  47. M. Fixman, J. Chem. Phys. 78, 1483 (1983)

    ADS  Google Scholar 

  48. C.S. Mangelsdorf, L.R. White, J. Chem. Soc., Faraday Trans. 88, 3567 (1992)

    Google Scholar 

  49. J.J. López-García, A. Moya, J. Horno, A. Delgado, F. González-Caballero, J. Colloid Interface Sci. 183, 124 (1996)

    Google Scholar 

  50. C.S. Mangelsdorf, L.R. White, J. Chem. Soc., Faraday Trans. 93, 3145 (1997)

    Google Scholar 

  51. R.J. Hill, D.A. Saville, W.B. Russel, Phys. Chem. Chem. Phys. 5, 911 (2003)

    Google Scholar 

  52. R.J. Hill, D. Saville, Colloids Surf. A 267, 31 (2005)

    Google Scholar 

  53. H. Zhou, M.A. Preston, R.D. Tilton, L.R. White, J. Colloid Interface Sci. 285, 845 (2005)

    Google Scholar 

  54. K. Kim, Y. Nakayama, R. Yamamoto, Phys. Rev. Lett. 96, 208302 (2006)

    ADS  Google Scholar 

  55. Y. Nakayama, K. Kim, R. Yamamoto, Eur. Phys. J. E 26, 361 (2008)

    Google Scholar 

  56. H. Zhao, H.H. Bau, J. Colloid Interface Sci. 333, 663 (2009)

    Google Scholar 

  57. R. Schmitz, B. Dünweg, J. Physics: Cond. Matter 24, 464111 (2012)

    ADS  Google Scholar 

  58. H. Zhao, H.H. Bau, Langmuir 26, 5412 (2010)

    Google Scholar 

  59. A.S. Khair, T.M. Squires, Phys. Fluids 21, 042001 (2009)

    ADS  Google Scholar 

  60. H. Zhao, Phys. Fluids 22, 072004 (2010)

    ADS  Google Scholar 

  61. F. Carrique, E. Ruiz-Reina, F.J. Arroyo, M.L. Jiménez, A.V. Delgado, Langmuir 24, 2395 (2008)

    Google Scholar 

  62. F. Carrique, E. Ruiz-Reina, F.J. Arroyo, M.L. Jiménez, A.V. Delgado, Langmuir 24, 11544 (2008)

    Google Scholar 

  63. R. Roa, F. Carrique, E. Ruiz-Reina, J. Colloid Interface Sci. 387, 153 (2012)

    Google Scholar 

  64. I. Pagonabarraga, B. Rotenberg, D. Frenkel, Phys. Chem. Chem. Phys. 12, 9566 (2010)

    Google Scholar 

  65. B. Rotenberg, I. Pagonabarraga, Mol. Phys. (2013), doi: 10.1080/00268976.2013.791731

  66. S. Succi, The Lattice Boltzmann Equation (Clarendon Press, Oxford, 2001)

  67. D. Raabe, Modelling Simul. Mater. Sci. Eng. 12, R13 (2004)

    ADS  Google Scholar 

  68. J.M. Yeomans, Physica A 369, 159 (2006)

    MathSciNet  ADS  Google Scholar 

  69. B. Dünweg, A.J.C. Ladd, Adv. Polym. Sci. 221, 89 (2009)

    Google Scholar 

  70. P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19, 155 (1992)

    ADS  Google Scholar 

  71. P. Español, P.B. Warren, Europhys. Lett. 30, 191 (1995)

    ADS  Google Scholar 

  72. R.D. Groot, P.B. Warren, J. Chem. Phys. 107, 4423 (1997)

    ADS  Google Scholar 

  73. A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)

    ADS  Google Scholar 

  74. R. Kapral, Adv. Chem. Phys. 140, 89 (2008)

    Google Scholar 

  75. G. Gompper, T. Ihle, D.M. Kroll, R.G. Winkler, Adv. Polym. Sci. 221, 1 (2009)

    Google Scholar 

  76. J. Smiatek, F. Schmid, Mesoscopic simulation methods for studying flow and transport in electric fields in micro- and nanochannels, Vol. 26 of Advances in Microfluidics chap. 5 (InTech Open Access Publisher, 2012), p. 97

  77. A. Ladd, Phys. Rev. Lett. 70, 1339 (1993)

    ADS  Google Scholar 

  78. A. Ladd, J. Fluid Mech. 271, 285 (1994)

    MathSciNet  ADS  MATH  Google Scholar 

  79. A. Ladd, J. Fluid Mech. 271, 311 (1994)

    MathSciNet  ADS  Google Scholar 

  80. A.J.C. Ladd, H. Gang, J. Zhu, D. Weitz, Phys. Rev. E 52, 6550 (1995)

    ADS  Google Scholar 

  81. A. Ladd, R. Verberg, J. Stat. Phys. 104, 1191 (2001)

    MathSciNet  ADS  MATH  Google Scholar 

  82. J. Horbach, D. Frenkel, Phys. Rev. E 64, 061507 (2001)

    ADS  Google Scholar 

  83. F. Capuani, I. Pagonabarraga, D. Frenkel, J. Chem. Phys. 121, 973 (2004)

    ADS  Google Scholar 

  84. B. Rotenberg, I. Pagonabarraga, D. Frenkel, Faraday Discuss. 144, 223 (2010)

    ADS  Google Scholar 

  85. G. Giupponi, I. Pagonabarraga, Phys. Rev. Lett. 106, 248304 (2011)

    ADS  Google Scholar 

  86. G. Giupponi, I. Pagonabarraga, Phil. Trans. R. Soc. A 369, 2546 (2011)

    MathSciNet  ADS  MATH  Google Scholar 

  87. P. Ahlrichs, B. Dünweg, Int. J. Mod. Phys. C 9, 1429 (1998)

    ADS  Google Scholar 

  88. P. Ahlrichs, B. Dünweg, J. Chem. Phys. 111, 8225 (1999)

    ADS  Google Scholar 

  89. V. Lobaskin, B. Dünweg, New J. Phys. 6, 54 (2004)

    ADS  Google Scholar 

  90. V. Lobaskin, B. Dünweg, C. Holm, J. Phys.: Condens. Matter 16, S4063 (2004)

    ADS  Google Scholar 

  91. V. Lobaskin, B. Dünweg, M. Medebach, T. Palberg, C. Holm, Phys. Rev. Lett. 98, 176105 (2007)

    ADS  Google Scholar 

  92. I. Semenov, S. Raafatnia, M. Sega, V. Lobaskin, C. Holm, F. Kremer, Phys. Rev. E 87, 022302 (2013)

    ADS  Google Scholar 

  93. A. Chatterji, J. Horbach, J. Chem. Phys. 122, 184903 (2005)

    ADS  Google Scholar 

  94. A. Chatterji, J. Horbach, J. Chem. Phys. 126, 064907 (2007)

    ADS  Google Scholar 

  95. A. Chatterji, J. Horbach, J. Phys.: Condens. Matter 22, 494102 (2010)

    Google Scholar 

  96. J.M.V.A. Koelman, P.J. Hoogerbrugge, Europhys. Lett. 21, 363 (1993)

    ADS  Google Scholar 

  97. E.S. Boek, P.V. Coveney, H.N.W. Lekkerkerker, P. van der Schoot, Phys. Rev. E 55, 3124 (1997)

    ADS  Google Scholar 

  98. T. Steiner, C. Cupelli, R. Zengerle, M. Santer, Microfluid. Nanofluid. 7, 307 (2009)

    Google Scholar 

  99. P. Español, Phys. Rev. E 57, 2930 (1998)

    ADS  Google Scholar 

  100. W. Dzwinel, D.A. Yuen, J. Colloid Interface Sci. 225, 179 (2000)

    Google Scholar 

  101. W. Pan, I.V. Pivkin, G.E. Karniadakis, Europhys. Lett. 84, 10012 (2008)

    MathSciNet  ADS  Google Scholar 

  102. J. Zhou, F. Schmid, J. Phys.: Condens. Matter 24, 464112 (2012)

    ADS  Google Scholar 

  103. J. Smiatek, M. Allen, F. Schmid, Eur. Phys. J. E 26, 115 (2008)

    Google Scholar 

  104. J. Smiatek, M. Sega, C. Holm, U.D. Schiller, F. Schmid, J. Chem. Phys. 130, 244702 (2009)

    ADS  Google Scholar 

  105. J. Smiatek, F. Schmid, J. Phys. Chem. B 114, 6266 (2010)

    Google Scholar 

  106. J. Smiatek, F. Schmid, Comp. Phys. Comm. 182, 1941 (2011)

    ADS  Google Scholar 

  107. J. Zhou, A.V. Belyaev, F. Schmid, O.I. Vinogradova, J. Chem. Phys. 136, 194706 (2012)

    ADS  Google Scholar 

  108. S. Meinhardt, J. Smiatek, R. Eichhorn, F. Schmid, Phys. Rev. Lett. 108, 214504 (2012)

    ADS  Google Scholar 

  109. W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graph. 14, 33 (1996)

    Google Scholar 

  110. A. Malevanets, R. Kapral, J. Chem. Phys. 112, 7260 (2000)

    ADS  Google Scholar 

  111. S.H. Lee, R. Kapral, Physica A 298, 56 (2001)

    ADS  Google Scholar 

  112. A. Lamura, G. Gompper, T. Ihle, D.M. Kroll, Europhys. Lett. 56, 319 (2001)

    ADS  Google Scholar 

  113. A. Lamura, G. Gompper, Eur. Phys. J. E 9, 477 (2002)

    Google Scholar 

  114. S.H. Lee, R. Kapral, J. Chem. Phys. 121, 11163 (2004)

    ADS  Google Scholar 

  115. J.T. Padding, A. Wysocki, H. Löwen, A.A. Louis, J. Phys.: Condens. Matter 17, S3393 (2005)

    ADS  Google Scholar 

  116. J.T. Padding, A.A. Louis, Phys. Rev. E 74, 031402 (2006)

    ADS  Google Scholar 

  117. J.K. Whitmer, E. Luijten, J. Phys.: Condens. Matter 22, 104106 (2010)

    ADS  Google Scholar 

  118. J. Zhou, F. Schmid, Eur. Phys. J. E 36, 33 (2013)

    Google Scholar 

  119. J. Zhou, R. Schmitz, B. Dünweg, F. Schmid, J. Chem. Phys. 139, 024901 (2013)

    ADS  Google Scholar 

  120. J. Bikerman, Trans. Faraday Soc. 35, 154 (1940)

    Google Scholar 

  121. R.W. O’Brien, J. Colloid Interface Sci. 113, 81 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, J., Schmid, F. Computer simulations of charged colloids in alternating electric fields. Eur. Phys. J. Spec. Top. 222, 2911–2922 (2013). https://doi.org/10.1140/epjst/e2013-02066-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2013-02066-y

Keywords

Navigation