Skip to main content
Log in

Mesoscale simulation of concrete spall failure

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Although intensively studied, it is still being debated which physical mechanisms are responsible for the increase of dynamic strength and fracture energy of concrete observed at high loading rates, and to what extent structural inertia forces on different scales contribute to the observation. We present a new approach for the three dimensional mesoscale modelling of dynamic damage and cracking in concrete. Concrete is approximated as a composite of spherical elastic aggregates of mm to cm size embedded in an elastic cement stone matrix. Cracking within the matrix and at aggregate interfaces in the μm range are modelled with adaptively inserted—initially rigid—cohesive interface elements. The model is applied to analyse the dynamic tensile failure observed in Hopkinson-Bar spallation experiments with strain rates up to 100/s. The influence of the key mesoscale failure parameters of strength, fracture energy and relative weakening of the ITZ on macromechanic strength, momentum and energy conservation is numerically investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.P. Bažant, F.C. Caner, M.D. Adley, S.A. Akers, J. Eng. Mech. 126, 962 (2000)

    Article  Google Scholar 

  2. J. Ožbolt, A. Sharma, H.W. Reinhardt, Int. J. Solid Struct. 48, 1534 (2011)

    Article  MATH  Google Scholar 

  3. J.E. Bolander, S. Saito, Adv. Cement Based Mater. 6, 76 (1997)

    Google Scholar 

  4. P. Grassland, M. Jirásek, Int. J. Solid Struct. 47, 957 (2010)

    Article  Google Scholar 

  5. S. Häfner, S. Eckardt, T. Luther, C. Könke, Comput. Struct. 84, 450 (2006)

    Article  Google Scholar 

  6. P. Wriggers, S.O. Moftah, Finite Elem. Anal. Des. 42, 623 (2006)

    Article  Google Scholar 

  7. F. Dupray, Y. Malecot, L. Daudeville, E. Buzaud, Int. J. Numer. Anal. Meth. Geomech. 33, 1407 (2009)

    Article  Google Scholar 

  8. W. Riedel, M. Wicklein, K. Thoma, Int. J. Impact Eng. 35, 155 (2008)

    Article  Google Scholar 

  9. B. Erzar, P. Forquin, Mech. Mater. 43, 505 (2011)

    Article  Google Scholar 

  10. T. Hartmann, Ph.D. thesis, Universität der Bundeswehr München, 2009

  11. X.Q. Zhou, H. Hao, Comput. Struct. 86, 2013 (2008)

    Article  Google Scholar 

  12. X.Q. Zhou, H. Hao, Int. J. Impact Eng. 36, 1315 (2009)

    Article  Google Scholar 

  13. S. Knell, Ph.D. thesis, Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, Freiburg (Fraunhofer Verlag, Stuttgart, 2011)

  14. E. Cadoni, C. Albertini, G. Solomos, J. Phys. IV (France) 134, 647 (2006)

    Article  Google Scholar 

  15. M. Daimaruya, H. Kobayashi, J. Phys. IV (France) 10, 173 (2000)

    Google Scholar 

  16. F. Gálvez, J. Rodríguez, V. Sánchez Gálvez, J. Phys. IV (France) 10, 203 (2000)

    Google Scholar 

  17. J.R. Klepaczko, A. Brara, Int. J. Impact Eng. 25, 387 (2001)

    Article  Google Scholar 

  18. H. Schuler, C. Mayrhofer, K. Thoma, Int. J. Impact Eng. 32, 1635 (2006)

    Article  Google Scholar 

  19. J. Weerheijm, J.C.A.M. Doormaal, Int. J. Impact Eng. 34, 609 (2007)

    Article  Google Scholar 

  20. H. Schuler, Ph.D. thesis, Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, Freiburg (Fraunhofer Verlag, Stuttgart, 2004)

  21. H. Schuler, H. Hansson, J. Phys. IV (France) 134, 1145 (2006)

    Article  Google Scholar 

  22. O. Millon, W. Riedel, K. Thoma, M. Nöldgen, E. Fehling, in Proceedings of the 9th International Conference on the Mechanical and Physical Behavior of Materials under Dynamic Loading DYMAT (Brussels, 2009)

  23. G. Appa Rao, B. K. Raghu Prasad, Mater. Struct. 37, 328 (2004)

    Article  Google Scholar 

  24. K.D. Papoulia, C.-H. Sam, S.A. Vavasis, Int. J. Num. Meth. Eng. 58, 679 (2003)

    Article  MATH  Google Scholar 

  25. A. Pandolfi, M. Ortiz, Eng. Comput. 18, 148 (2002)

    Article  Google Scholar 

  26. M. Ortiz, A. Pandolfi, Int. J. Num. Meth. Eng. 44, 1267 (1999)

    Article  MATH  Google Scholar 

  27. G.T. Camacho, M. Ortiz, Int. J. Solid Struct. 33, 2899 (1996)

    Article  MATH  Google Scholar 

  28. C. Geuzaine, J.-F. Remacle, http://www.geuz.org/gmsh (15.08.2011)

  29. C. Geuzaine, J.-F. Remacle, Int. J. Num. Meth. Eng. 79, 1309 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Si, tetgen.berlios.de (15.08.2011)

  31. W. Riedel, Ph.D. thesis, Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, Freiburg (Fraunhofer Verlag, Stuttgart, 2004)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knell, S., Sauer, M., Millon, O. et al. Mesoscale simulation of concrete spall failure. Eur. Phys. J. Spec. Top. 206, 139–148 (2012). https://doi.org/10.1140/epjst/e2012-01595-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2012-01595-1

Keywords

Navigation