Skip to main content
Log in

Ground-based laser effect on space debris maneuvering

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Space debris events are increasingly frequent where they are sufficiently dense that the use of low Earth orbit space has now reached the point under the effect of mutual collisions. As a mitigation method, the goal was to study the efficiency of an orbital maneuver considering the gravitational effect and ground-based laser when the space debris traveling in a heliocentric orbit in the range of 1 cm to 10 cm and altitude ranging from 100 to 1000 km makes a close approach to Earth. An analytical model was performed considering factors, such as the laser’s fluency, the debris’s inclination, and the relative movement between laser and debris. The analysis was performed through the variation of velocity and energy after a close approach considering a single pulse laser. It is important in evaluating the orbital characteristics of space debris for better reentry of Earth’s atmosphere or avoiding collisions considering the impulse magnitude performed by ground-based laser. Some results show that the laser can perform a small change in \(\Delta V\) and have maximum efficiency in energy variation of \(12 \%\) that can be accumulated and perform energy of the reentry. In that sense, this study provides the literature with a general study of this maneuver, showing its advantages over more traditional orbital maneuvers, as well as the best conditions to avoid collisions and mitigate space debris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

No data and materials associated in the manuscript.

References

  1. J. Donald, B. Cour-Palais, Collision frequency of artificial satellites. J. Geophys. Res. 83, 2637–2646 (1978). https://doi.org/10.1029/JA083iA06p02637

    Article  ADS  Google Scholar 

  2. D.J. Kessler, Collision probability at low altitudes resulting from elliptical orbits. Adv. Space Res. 10, 393–396 (1990). https://doi.org/10.1016/0273-1177(90)90376-B

    Article  ADS  Google Scholar 

  3. B.S. Yu, H. Wen, D.P. Jin, Review of deployment technology for tethered satellite systems. Acta. Mech. Sin. 34, 754–768 (2018). https://doi.org/10.1007/s10409-018-0752-5

    Article  ADS  Google Scholar 

  4. G. Feng, W. Li, H. Zhang, Removing singularity of orientation description for modeling and controlling an electrodynamic tether. J. Guid. Control. Dyn. 41, 761–766 (2018). https://doi.org/10.2514/1.G003009

    Article  Google Scholar 

  5. G. Feng, W. Li, H. Zhang, Geomagnetic energy approach to space debris deorbiting in a low earth orbit. Int. J. Aerosp. Eng. 2019, 1–19 (2019). https://doi.org/10.1155/2019/5876861

    Article  Google Scholar 

  6. E.J. Öpik, Collision probabilities with the planets and the distribution of interplanetary matter. Proc. R. Ir. Acad. Sect. A 54, 165–199 (1951)

    Google Scholar 

  7. D.J. Kessler, N.L. Johnson, J. Liou, M. Matney, Breckenridge: the Kessler syndrome: implications to the future space operations (2010)

  8. F. Letizia, C. Colombo, H. Lewis, C.R. Mcinnes, et al.: Space debris cloud evolution in low earth orbit. In: 64th International Astronautical Congress (IAC), pp. 2507–2517 (2013)

  9. F. Letizia, C. Colombo, H.G. Lewis, Small debris fragments contribution to collision probability for spacecraft in low earth orbits, in Space Safety Is No Accident. (Springer, 2015), pp.379–387

    Chapter  Google Scholar 

  10. J.K. Formiga, D.P.S. Santos, F.A. Fiore, R. Moraes, A.F.B.A. Prado, Study of collision probability considering a non-uniform cloud of space debris. Comput. Appl. Math. 39, 1–15 (2020). https://doi.org/10.1007/s40314-019-0997-z

    Article  MathSciNet  Google Scholar 

  11. F. Prado, Powered swingby. J. Guid. Control. Dyn. 19(5), 1142–1147 (1996)

    Article  ADS  Google Scholar 

  12. N.J. Strange, J.M. Longuski, Graphical method for gravity-assist trajectory design. J. Spacer Rockets 39, 9–16 (2002)

    Article  ADS  Google Scholar 

  13. A.F. Helton, N.J. Strange, J.M. Longuski, Automated desing of the Europa orbiter tour. J. Spacer Rockets 39, 17–22 (2002). https://doi.org/10.2514/2.3801

    Article  ADS  Google Scholar 

  14. D.P.S. Santos, A.F.B.A. Prado, L. Casalino, G. Colasurdo, Optimal trajectories towards near-earth-objects using solar electric propulsion (SEP) and gravity assisted maneuver. J. Aerosp. Eng. Sci 1, 51–64 (2002). https://doi.org/10.7446/jaesa.0102.06

    Article  Google Scholar 

  15. A.F.B.A. Prado, G. Felipe, An analytical study of the powered swing-by to perform orbital maneuvers. Adv. Space Res. 40, 1769–1968 (2007). https://doi.org/10.1016/j.asr.2007.04.098

    Article  Google Scholar 

  16. J. Formiga, A. Prado, Orbital characteristics due to the three dimensional swing-by in the Sun-Jupiter system. Int. Conf. Comput. Intell. Man Mach. Syst. Cybern. 1, 61–69 (2011)

    Google Scholar 

  17. S. Scharring, J. Kästel, G. Wagner, W. Riede, E. Klein, C. Bamann, E. Döberl, W.D. Promper, R. Weinzinger, T. Flohrer, A. Di Mira, Potential of Using Ground-based High-Power Lasers to Decelerate the Evolution of Space Debris in LEO, in Proceedings of 8th Conference on Space DEbris (Virtual), Darmstadt, Germany, 20–23 April 2021. ed. by T. Flohrer, S. Lemmens, F. Schmitz (EAS Space Debris Office, 2021), pp.1–7

    Google Scholar 

  18. J. Sinko, C. Phipps, Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes. Appl. Phys. Lett. 95, 131105 (2009). https://doi.org/10.1063/1.3234382

    Article  ADS  Google Scholar 

  19. J. Starke, B. Bischof, al.: A potential orbital space debris removal system. In: Proceedings of NASA/DARPA Orbital Debris Conference, Chantilly VA (2009)

  20. M. Bender, Flexible and low-cost dragon spacecraft for orbital debris removal. In: Proceedings of NASA/DARPA Orbital Debris Conference, Chantilly VA (2009)

  21. S. Kawamoto, Y. Ohkawa, et al.: Strategies and technologies for cost effective removal of large sized objects. In: Proceedings of NASA/DARPA Orbital Debris Conference, Chantilly VA (2009)

  22. C.R.E.A. Phipps, Removing orbital debris with lasers. Recent Pat. Space Technol. 49, 1283–1300 (2012). https://doi.org/10.1016/j.asr.2012.02.003

    Article  Google Scholar 

  23. C. Phipps, A laser-optical system to re-enter or lower low earth orbit space debris. Acta Astronaut. 93, 418–429 (2014). https://doi.org/10.1016/j.actaastro.2013.07.031

    Article  ADS  Google Scholar 

  24. J. Formiga, A. Prado, Studying sequences of resonant orbits to perform successive close approaches with the moon. J. Brazil. Soc. Mech. Sci. Eng. 37(4), 1391–1404 (2015). https://doi.org/10.1007/s40430-014-0254-8

    Article  Google Scholar 

  25. J.K. Formiga, D.P.S. Santos, An analytical description of the three-dimensional swing-by. Comput. Appl. Math. 34, 491–506 (2015). https://doi.org/10.1007/s40314-014-0139-6

    Article  MathSciNet  Google Scholar 

  26. R. Broucke, The celestial mechanics of gravity assist. AIAA/AAS Astrodyn. Conf. AIAA Pap. 88–4220, 69–89 (1988). https://doi.org/10.2514/6.1988-4220

    Article  ADS  Google Scholar 

  27. S. Soldini, C. Colombo, J. Scott, Solar radiation pressure Hamiltonian feedback control for unstable libration-point orbits. J. Guid. Control. Dyn. 4(40), 1374–1389 (2016)

    Google Scholar 

  28. C. Phipps, An alternate treatment of the vapor-plasma transition. Int. J. Aerosp. Innov. 3, 45–50 (2011). https://doi.org/10.1260/1757-2258.3.1.45

    Article  Google Scholar 

  29. M. Schimitz, S. Fasoulas, J. Utzmann, Performance model for space-based laser debris sweepers. Acta Astronaut. 115, 376–386 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their appreciation for the support provided by Grants \(2022/13228-9\), \(2023/01391-5\), \(2017/04643-4\), \(2016/15675-1\), from the São Paulo Research Foundation (FAPESP), Institute of Science and Technology-UNESP/ICT-São Paulo State University, grants \(309089/2021-2\) from Brazilian National Council for Scientific and Technological Development (CNPq), FINEP 0527/18 and the RUDN University Scientific Projects Grant System, project No \(202235-2-000\). Julian A. Avila is a Serra Hunter Fellow and a CNPq fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Kennety Silva Formiga.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Formiga, J.K.S., dos Santos, D.P.S., de Almeida Prado, A.F.B. et al. Ground-based laser effect on space debris maneuvering. Eur. Phys. J. Spec. Top. 232, 3059–3072 (2023). https://doi.org/10.1140/epjs/s11734-023-01023-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-01023-z

Navigation