Skip to main content
Log in

Co, Fe and CoFe oxide nanoparticle assemblies within an ordered silica matrix: effects of the metal ions and synthesis pathway on the microstructure and magnetic properties

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The magnetic properties of nanoparticle assemblies strongly depend on the structural and morphological characteristics of the individual nanoparticles as well as on their organization within the assembly. Here, we present the synthesis of cobalt and/or iron oxide nanoparticles within the ordered mesoporosity of a silica monolith by two different synthesis pathways (using either Prussian blue analogues or nitrate salts as a precursor). We describe the influence of the nature of the metal ion and of the synthesis pathway on the morphology of the nanoparticles. With respect to these observations, we present and discuss the temperature-dependent magnetic behaviors of the final nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science 279, 548–552 (1998)

    Article  ADS  Google Scholar 

  2. J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114, 10834–10843 (1992)

    Article  Google Scholar 

  3. R. Moulin, G. Fornasieri, M. Impéror-Clerc, E. Rivière, P. Beaunier, A. Bleuzen, ChemNanoMat 3, 833–840 (2017)

    Article  Google Scholar 

  4. H. Yang, Q. Shi, B. Tian, S. Xie, F. Zhang, Y. Yan, B. Tu, D. Zhao, Chem. Mater. 15, 536–541 (2003)

    Article  Google Scholar 

  5. P. Durand, G. Fornasieri, C. Baumier, P. Beaunier, D. Durand, E. Rivière, A. Bleuzen, J. Mater. Chem. 20, 9348–9354 (2010)

    Article  Google Scholar 

  6. E.L. Salabas, A. Rumplecker, F. Kleitz, F. Radu, F. Schuth, Nano Lett. 6, 2977–2981 (2006)

    Article  ADS  Google Scholar 

  7. J. Rosen, G.S. Hutchings, F. Jiao, J. Catal. 310, 2–9 (2014)

    Article  Google Scholar 

  8. M. Imperor-Clerc, D. Bazin, M.-D. Appay, P. Beaunier, A. Davidson, Chem. Mater. 16, 1813–1821 (2004)

    Article  Google Scholar 

  9. E. Delahaye, V. Escax, N.E. Hassan, A. Davidson, R. Aquino, V. Dupuis, R. Perzynski, Y.L. Raikher, J. Phys. Chem. B 110, 26001–26011 (2006)

    Article  Google Scholar 

  10. V. Matsura, Y. Guari, J. Larionova, C. Guérin, A. Caneschi, C. Sangregorio, E. Lancelle-Beltran, A. Mehdi, R.J.P. Corriu, J. Mater. Chem. 14, 3026–3033 (2004)

    Article  Google Scholar 

  11. D. Carta, G. Mountjoy, R. Apps, A. Corrias, J. Phys. Chem. C 116, 12353–12365 (2012)

    Article  Google Scholar 

  12. E. Kockrick, P. Krawiec, W. Schnelle, D. Geiger, F.M. Schappacher, R. Pöttgen, S. Kaskel, Adv. Mater. 19, 3021–3026 (2007)

    Article  Google Scholar 

  13. Y. Guo, R. Weiss, M. Epple, Eur. J. Inorg. Chem. 2005, 3072–3079 (2005)

    Article  Google Scholar 

  14. V. Trannoy, A. Bordage, J. Dezalay, R. Saint-Martin, E. Rivière, P. Beaunier, C. Baumier, C. La Fontaine, G. Fornasieri, A. Bleuzen, CrystEngComm 21, 3634–3643 (2019)

    Article  Google Scholar 

  15. D. Liu, R. Qiang, Y. Du, Y. Wang, C. Tian, X. Han, J. Colloid Interface Sci. 514, 10–20 (2018)

    Article  ADS  Google Scholar 

  16. X. Hou, G. Zhu, X. Niu, Z. Dai, Z. Yin, Q. Dong, Y. Zhang, X. Dong, J. Alloys Compd. 729, 518–525 (2017)

    Article  Google Scholar 

  17. M. Cheng, Y. Liu, D. Huang, C. Lai, G. Zeng, J. Huang, Z. Liu, C. Zhang, C. Zhou, L. Qin, W. Xiong, H. Yi, Y. Yang, Chem. Eng. J. 362, 865–876 (2019)

    Article  Google Scholar 

  18. B. Folch, J. Larionova, Y. Guari, L. Datas, C. Guérin, J. Mater. Chem. 16, 4435–4442 (2006)

    Article  Google Scholar 

  19. B. Folch, Y. Guari, J. Larionova, C. Luna, C. Sangregorio, C. Innocenti, A. Caneschi, C. Guérin, New J. Chem. 32, 273–282 (2008)

    Article  Google Scholar 

  20. G. Clavel, Y. Guari, J. Larionova, C. Guérin, New J. Chem. 29, 275–279 (2005)

    Article  Google Scholar 

  21. A.F. Gross, M.R. Diehl, K.C. Beverly, E.K. Richman, S.H. Tolbert, J. Phys. Chem. B 107, 5475–5482 (2003)

    Article  Google Scholar 

  22. D. Peddis, C. Cannas, A. Musinu, G. Piccaluga, Chem. Eur. J. 15, 7822–7829 (2009)

    Article  Google Scholar 

  23. E. Delahaye, R. Moulin, M. Aouadi, V. Trannoy, P. Beaunier, G. Fornasieri, A. Bleuzen, Chem. Eur. J. 21, 16906–16916 (2015)

    Article  Google Scholar 

  24. M. Aouadi, G. Fornasieri, V. Briois, P. Durand, A. Bleuzen, Chem. Eur. J. 18, 2617–2623 (2012)

    Article  Google Scholar 

  25. C. Cannas, D. Gatteschi, A. Musinu, G. Piccaluga, C. Sangregorio, J. Phys. Chem. B 102, 7721–7726 (1998)

  26. M. Popovici, M. Gich, D. Niznansky, A. Roig, C. Savii, L. Casas, E. Molins, K. Zaveta, C. Enanche, J. Sort, Sd. Brion, G. Chouteau, J. Nogués, Chem. Mater. 16, 5542–5548 (2004)

    Article  Google Scholar 

  27. Y. Ichiyanagi, Y. Kimishima, S. Yamada, J. Magn. Magn. Mater. 272–276, E1245–E1246 (2004)

    Article  Google Scholar 

  28. Y. Ichiyanagi, S. Yamada, Polyhedron 24, 2813–2816 (2005)

    Article  Google Scholar 

  29. S. Sakurai, A. Namai, K. Hashimoto, S.-I. Ohkoshi, J. Am. Chem. Soc. 131, 18299–18303 (2009)

    Article  Google Scholar 

  30. K. Nadeem, H. Krenn, T. Traussnig, R. Würschum, D.V. Szabó, I. Letofsky-Papst, J. Magn. Magn. Mater. 323, 1998–2004 (2011)

    Article  ADS  Google Scholar 

  31. L.A. Mercante, W.W.M. Melo, M. Granada, H.E. Troiani, W.A.A. Macedo, J.D. Ardison, M.G.F. Vaz, M.A. Novak, J. Magn. Magn. Mater. 324, 3029–3033 (2012)

    Article  ADS  Google Scholar 

  32. G. Muscas, G. Concas, S. Laureti, A.M. Testa, R. Mathieu, J.A. De Toro, C. Cannas, A. Musinu, M.A. Novak, C. Sangregorio, S.S. Lee, D. Peddis, Phys. Chem. Chem. Phys. 20, 28634–28643 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Paris-Saclay University and the CNRS. L.A. thanks the French government for the PhD financial support. The authors acknowledge SOLEIL for the provision of synchrotron radiation facility on the SAMBA beamline through proposal 20180973.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laura Altenschmidt or Anne Bleuzen.

Appendix: Supporting figures

Appendix: Supporting figures

Fig. 7
figure 7

Normalized Fe K-edge XANES spectra of NO3FeOx compared with the spectra of the maghemite and hematite references. It can be seen that the spectrum of NO3FeOx exhibits the same spectral features as the one of maghemite, whereas it is clearly different from the hematite one. This indicates the formation of maghemite rather than hematite in NO3FeOx. The spectra were measured in transmission mode on the SAMBA beamline at SOLEIL (Gif-sur-Yvette, France). They were conventionally normalized using the ATHENA software and energy calibrated after measurement. The acquisition was performed at room temperature in a continuous mode from 6900 to 8300 eV. No radiation damage was observed. The references were measured as pellets diluted in BN and NO3FeOx was placed between two pieces of kapton tape

Fig. 8
figure 8

HR-TEM image of NO3CoFeOx showing a polycrystalline nanorod

Fig. 9
figure 9

Representative EDS spectra of a NO3CoFeOx showing the strong variations of the Co/Fe ratio within the different regions of the nanoparticle assembly, and b PBACoFeOx showing a Co/Fe ratio of 1.5

Fig. 10
figure 10

Frequency-dependent AC magnetic measurements of NO3FeOx in the 10–120 K temperature range

Fig. 11
figure 11

In-phase (\(\upchi \)’) and out-of-phase (\(\upchi \)”) components of the AC magnetic susceptibility as a function of temperature of a NO3CoFeOx and b PBACoFeOx

Fig. 12
figure 12

Magnetization measured at 5 K after cooling from 300 K with an applied field of H \(=\) 30 kOe of a NO3CoFeOx and b PBACoFeOx

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altenschmidt, L., Beaunier, P., Riviére, E. et al. Co, Fe and CoFe oxide nanoparticle assemblies within an ordered silica matrix: effects of the metal ions and synthesis pathway on the microstructure and magnetic properties. Eur. Phys. J. Spec. Top. 231, 4233–4244 (2022). https://doi.org/10.1140/epjs/s11734-022-00571-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00571-0

Navigation