Skip to main content
Log in

Different forms of laser–matter interaction operators and expansion in adiabatic states

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The interaction between atoms and molecules and intense laser pulses is typically described in either the velocity gauge, length gauge or in the Kramers–Henneberger frame. Here, certain relations between these forms are discussed. In particular expansions of the solution to the time-dependent Schrödinger equation in adiabatic states are considered. Such expansions in adiabatic states could be expected to be attractive for intense long-wavelength infrared laser pulses, where the external field changes on a slow timescale compared with the electron motion. It is shown that an expansion in velocity gauge adiabatic states gives the equations of motions that follow from an expansion in field-free states and by expressing the interaction operator in the length gauge. Likewise, it is shown that an expansion in the Kramers–Henneberger frame adiabatic states gives the equations of motion following an expansion in field-free states and using the velocity gauge interaction operator. Finally, an alternative form for the laser–matter interaction operator is considered, which is similar to the velocity gauge, but shifts the canonical momentum operator by the impulse associated with the Kramers–Henneberger interaction operator, rather than that of the electric field as is the case in the velocity gauge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.V.B. Jensen, M.M. Lund, L.B. Madsen, Nondipole strong-field-approximation Hamiltonian. Phys. Rev. A 101, 043408 (2020). https://doi.org/10.1103/PhysRevA.101.043408. https://link.aps.org/doi/10.1103/PhysRevA.101.043408

  2. E. Cormier, P. Lambropoulos, Optimal gauge and gauge invariance in non-perturbative time-dependent calculation of above-threshold ionization. J. Phys. B Atom. Mol. Opt. Phys. 29(9), 1667–1680 (1996). https://doi.org/10.1088/0953-4075/29/9/013

    Article  ADS  Google Scholar 

  3. A. Ludwig, J. Maurer, B.W. Mayer, C.R. Phillips, L. Gallmann, U. Keller, Breakdown of the dipole approximation in strong-field ionization. Phys. Rev. Lett. 113, 243001 (2014). https://doi.org/10.1103/PhysRevLett.113.243001

    Article  ADS  Google Scholar 

  4. H.R. Reiss, Limits on tunneling theories of strong-field ionization. Phys. Rev. Lett. 101, 043002 (2008). https://doi.org/10.1103/PhysRevLett.101.043002. https://link.aps.org/doi/10.1103/PhysRevLett.101.043002

  5. J.J. Sakurai, Modern Quantum Mechanics (Addison-Wesley Publishing Company Inc, Reading, 1994)

    Google Scholar 

  6. L.B. Madsen, Gauge invariance in the interaction between atoms and few-cycle laser pulses. Phys. Rev. A 65, 053417 (2002). https://doi.org/10.1103/PhysRevA.65.053417. https://link.aps.org/doi/10.1103/PhysRevA.65.053417

  7. L.V. Keldysh, Ionization in the field of a strong electromagnetic wave. Sov. Phys. JETP 20, 1307 (1965)

    MathSciNet  Google Scholar 

  8. F.H.M. Faisal, Multiple absorption of laser photons by atoms. J. Phys. B 6(4), L89–L92 (1973). https://doi.org/10.1088/0022-3700/6/4/011

    Article  ADS  Google Scholar 

  9. H.R. Reiss, Effect of an intense electromagnetic field on a weakly bound system. Phys. Rev. A 22, 1786–1813 (1980). https://doi.org/10.1103/PhysRevA.22.1786. https://link.aps.org/doi/10.1103/PhysRevA.22.1786

  10. D. Bauer, D.B. Milošević, W. Becker, Strong-field approximation for intense-laser-atom processes: the choice of gauge. Phys. Rev. A 72, 023415 (2005). https://doi.org/10.1103/PhysRevA.72.023415. https://link.aps.org/doi/10.1103/PhysRevA.72.023415

  11. T.K. Kjeldsen, L.B. Madsen, Strong-field ionization of \({N}_2\): length and velocity gauge strong-field approximation and tunnelling theory. J. Phys. B Atom. Mol. Opt. Phys. 37(10), 2033–2044 (2004). https://doi.org/10.1088/0953-4075/37/10/003

    Article  ADS  Google Scholar 

  12. M. Gavrila, J.Z. Kamiński, Free–free transitions in intense high-frequency laser fields. Phys. Rev. Lett. 52, 613–616 (1984). https://doi.org/10.1103/PhysRevLett.52.613. https://link.aps.org/doi/10.1103/PhysRevLett.52.613

  13. H.G. Muller, An efficient propagation scheme for the time-dependent Schrödinger equation in the velocity gauge. Laser Phys. 9, 138–148 (1999)

    Google Scholar 

  14. D. Bauer, P. Koval, Qprop: A Schrödinger-solver for intense laser–atom interaction. Comput. Phys. Commun. 174(5):396–421 (2006). ISSN 0010-4655. https://doi.org/10.1016/j.cpc.2005.11.001. http://www.sciencedirect.com/science/article/pii/S0010465505005825

  15. T.K. Kjeldsen, L.A.A. Nikolopoulos, L.B. Madsen, Solving the \(m\)-mixing problem for the three-dimensional time-dependent Schrödinger equation by rotations: application to strong-field ionization of \({\rm H}_{2}^{+}\). Phys. Rev. A 75, 063427 (2007). https://doi.org/10.1103/PhysRevA.75.063427. https://link.aps.org/doi/10.1103/PhysRevA.75.063427

  16. S. Patchkovskii, H.G. Muller, Simple, accurate, and efficient implementation of 1-electron atomic time-dependent Schrödinger equation in spherical coordinates. Comput. Phys. Commun. 199:153–169 (2016). ISSN 0010-4655. https://doi.org/10.1016/j.cpc.2015.10.014. http://www.sciencedirect.com/science/article/pii/S001046551500394X

  17. M.V. Berry, Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A Math. Phys. Sci. 392(1802):45–57 (1984). https://doi.org/10.1098/rspa.1984.0023. https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1984.0023

  18. W.V. Houston, Acceleration of electrons in a crystal lattice. Phys. Rev. 57, 184–186 (1940) https://doi.org/10.1103/PhysRev.57.184. https://link.aps.org/doi/10.1103/PhysRev.57.184

  19. W. Mengxi, S. Ghimire, D.A. Reis, K.J. Schafer, M.B. Gaarde, High-harmonic generation from Bloch electrons in solids. Phys. Rev. A 91, 043839 (2015). https://doi.org/10.1103/PhysRevA.91.043839. https://link.aps.org/doi/10.1103/PhysRevA.91.043839

  20. S.Y. Kruchinin, F. Krausz, V.S. Yakovlev, Colloquium: Strong-field phenomena in periodic systems. Rev. Mod. Phys. 90:021002 (2018). https://doi.org/10.1103/RevModPhys.90.021002. https://link.aps.org/doi/10.1103/RevModPhys.90.021002

  21. R.G. Newton, Scattering Theory of Waves and Particles (Springer, New York, 1982)

    Book  Google Scholar 

  22. L.O. Krainov, P.A. Batishchev, O.I. Tolstikhin, Siegert pseudostate formulation of scattering theory: general three-dimensional case. Phys. Rev. A 93, 042706 (2016). https://doi.org/10.1103/PhysRevA.93.042706. https://link.aps.org/doi/10.1103/PhysRevA.93.042706

  23. H.A. Bethe, E.E. Salpeter, Quantum Mechanics of One and Two-Electron Atoms (Plenum, New York, 1977)

    Book  Google Scholar 

  24. H. Miyagi, L.B. Madsen, Exterior time scaling with the stiffness-free Lanczos time propagator: formulation and application to atoms interacting with strong midinfrared lasers. Phys. Rev. A 93, 033420 (2016). https://doi.org/10.1103/PhysRevA.93.033420. https://link.aps.org/doi/10.1103/PhysRevA.93.033420

  25. D. Dimitrovski, E.A. Solovev, Ionization of negative ions and atoms by electric pulses: zigzag dependence on pulse duration. J. Phys. B Atom. Mol. Opt. Phys. 39(4), 895–903 (2006). https://doi.org/10.1088/0953-4075/39/4/013

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Simon Vendelbo Bylling Jensen for useful discussions. This work was supported by the Danish Council for Independent Research (Grant nos. 7014-00092B, 9040-00001B).

Author information

Authors and Affiliations

Authors

Contributions

The author conceived the idea regarding elucidation of the relations between the equations of motion after expansion in adiabatic states with equations of motion following the expansion in field-free states. The author derived the presented relations and formulas. The author wrote the manuscript.

Corresponding author

Correspondence to Lars Bojer Madsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madsen, L.B. Different forms of laser–matter interaction operators and expansion in adiabatic states. Eur. Phys. J. Spec. Top. 230, 4141–4150 (2021). https://doi.org/10.1140/epjs/s11734-021-00026-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00026-y

Navigation