Skip to main content

Advertisement

Log in

Constraining nuclear matter parameters from correlation systematics: a mean-field perspective

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The nuclear matter parameters define the nuclear equation of state (EoS), they appear as coefficients of expansion around the saturation density of symmetric and asymmetric nuclear matter. We review their correlations with several properties of finite nuclei and of neutron stars within mean-field frameworks. The lower order nuclear matter parameters such as the binding energy per nucleon, incompressibility and the symmetry energy coefficients are found to be constrained in narrow limits through their strong ties with selective properties of finite nuclei. From the correlations of nuclear matter parameters with neutron star observables, we further review how precision knowledge of the radii and tidal deformability of neutron stars in the mass range \(1 - 2 M_\odot \) may help cast them in narrower bounds. The higher order parameters such as the density slope and the curvature of the symmetry energy or the skewness of the symmetric nuclear matter EoS are, however, plagued with larger uncertainty. From inter-correlation of these higher order nuclear matter parameters with lower order ones, we explore how they can be brought to more harmonious bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. W.D. Myers, W.J. Swiatecki, Ann. Phys. 55, 395 (1969). https://doi.org/10.1016/0003-4916(69)90202-4

    Article  ADS  Google Scholar 

  2. W.D. Myers, W.J. Swiatecki, Phys. A 336, 267 (1980). https://doi.org/10.1016/0375-9474(80)90623-5Nucl

    Article  Google Scholar 

  3. P. Möller, W.D. Myers, H. Sagawa, S. Yoshida, Letters 108, 052501 (2012). https://doi.org/10.1103/PhysRevLett.108.052501Phys.Rev

    Article  Google Scholar 

  4. J.P. Blaizot, Phys. Rep. 64, 171 (1980). https://doi.org/10.1016/0370-1573(80)90001-0

    Article  ADS  MathSciNet  Google Scholar 

  5. Y.W. Lui, D.H. Youngblood, Y. Tokimoto, H.L. Clark, B. John, Phys. Rev. C 70, 014307 (2004). https://doi.org/10.1103/PhysRevC.70.014307

    Article  ADS  Google Scholar 

  6. T. Li et al., Phys. Rev. Lett. 99, 162503 (2007). https://doi.org/10.1103/PhysRevLett.99.162503. arXiv:0709.0567 [nucl-ex]

    Article  ADS  Google Scholar 

  7. U. Garg, Nucl. Phys. A 788, 36 (2007). https://doi.org/10.1016/j.nuclphysa.2007.01.046. arXiv:nucl-ex/0608007

    Article  ADS  Google Scholar 

  8. T. Li et al., Phys. Rev. C 81, 034309 (2010). https://doi.org/10.1103/PhysRevC.81.034309. arXiv:1002.0896 [nucl-ex]

    Article  ADS  Google Scholar 

  9. D. Patel et al., Phys. Lett. B 718, 447 (2012). https://doi.org/10.1016/j.physletb.2012.10.056. arXiv:1209.0681 [nucl-ex]

    Article  ADS  Google Scholar 

  10. E. Khan, J. Margueron, G. Colo, K. Hagino, H. Sagawa, Phys. Rev. C 82, 024322 (2010). https://doi.org/10.1103/PhysRevC.82.024322. arXiv:1005.1741 [nucl-th]

    Article  ADS  Google Scholar 

  11. E. Khan, J. Margueron, Phys. Rev. Lett. 109, 092501 (2012). https://doi.org/10.1103/PhysRevLett.109.092501. arXiv:1204.0399 [nucl-th]

    Article  ADS  Google Scholar 

  12. E. Khan, J. Margueron, Phys. Rev. C 88, 034319 (2013). https://doi.org/10.1103/PhysRevC.88.034319

    Article  ADS  Google Scholar 

  13. J.N. De, S.K. Samaddar, B.K. Agrawal, Phys. Rev. C 92, 014304 (2015). https://doi.org/10.1103/PhysRevC.92.014304. arXiv:1506.06461 [nucl-th]

    Article  ADS  Google Scholar 

  14. X. Roca-Maza, N. Paar, Prog. Part. Nucl. Phys. 101, 96 (2018). https://doi.org/10.1016/j.ppnp.2018.04.001. arXiv:1804.06256 [nucl-th]

    Article  ADS  Google Scholar 

  15. H. Jiang, G.J. Fu, Y.M. Zhao, A. Arima, Phys. Rev. C 85, 024301 (2012). https://doi.org/10.1103/PhysRevC.85.024301

    Article  ADS  Google Scholar 

  16. L. Trippa, G. Colo, E. Vigezzi, Phys. Rev. C 77, 061304 (2008). https://doi.org/10.1103/PhysRevC.77.061304. arXiv:0802.3658 [nucl-th]

    Article  ADS  Google Scholar 

  17. X. Roca-Maza, M. Brenna, B.K. Agrawal, P.F. Bortignon, G. Colò, L.-G. Cao, N. Paar, D. Vretenar, Phys. Rev. C 87, 034301 (2013a). https://doi.org/10.1103/PhysRevC.87.034301. arXiv:1212.4377 [nucl-th]

    Article  ADS  Google Scholar 

  18. B.A. Brown, Phys. Rev. Lett. 85, 5296 (2000). https://doi.org/10.1103/PhysRevLett.85.5296

    Article  ADS  Google Scholar 

  19. S. Typel, B.A. Brown, Phys. Rev. C 64, 027302 (2001). https://doi.org/10.1103/PhysRevC.64.027302

    Article  ADS  Google Scholar 

  20. M. Centelles, X. Roca-Maza, X. Vinas, M. Warda, Phys. Rev. Lett. 102, 122502 (2009). https://doi.org/10.1103/PhysRevLett.102.122502. arXiv:0806.2886 [nucl-th]

    Article  ADS  Google Scholar 

  21. M. Warda, X. Vinas, X. Roca-Maza, M. Centelles, Phys. Rev. C 80, 024316 (2009). https://doi.org/10.1103/PhysRevC.80.024316. arXiv:0906.0932 [nucl-th]

    Article  ADS  Google Scholar 

  22. S.  Abrahamyan, Z.  Ahmed, H.  Albataineh, K.  Aniol, D.S. Armstrong, W.  Armstrong, T.  Averett, B.  Babineau, A.  Barbieri, Bellini, (PREX Collaboration) et al., Phys. Rev. Lett. 108, 112502 (2012). https://doi.org/10.1103/PhysRevLett.108.112502

  23. A. Carbone, G. Colo, A. Bracco, L.-G. Cao, P.F. Bortignon, F. Camera, O. Wieland, Phys. Rev. C 81, 041301 (2010). https://doi.org/10.1103/PhysRevC.81.041301. arXiv:1003.3580 [nucl-th]

    Article  ADS  Google Scholar 

  24. M.A. Famiano, T. Liu, W.G. Lynch, A.M. Rogers, M.B. Tsang, M.S. Wallace, R.J. Charity, S. Komarov, D.G. Sarantites, L.G. Sobotka, Phys. Rev. Lett. 97, 052701 (2006). https://doi.org/10.1103/PhysRevLett.97.052701. arXiv:nucl-ex/0607016

    Article  ADS  Google Scholar 

  25. B.K. Agrawal, J.N. De, S.K. Samaddar, Phys. Rev. Lett. 109, 262501 (2012). https://doi.org/10.1103/PhysRevLett.109.262501. arXiv:1212.0292 [nucl-th]

    Article  ADS  Google Scholar 

  26. B.K. Agrawal, J.N. De, S.K. Samaddar, G. Colo, A. Sulaksono, Phys. Rev. C 87, 051306 (2013). https://doi.org/10.1103/PhysRevC.87.051306. arXiv:1305.5336 [nucl-th]

    Article  ADS  Google Scholar 

  27. A.W. Steiner, S. Gandolfi, Phys. Rev. Lett. 108, 081102 (2012). https://doi.org/10.1103/PhysRevLett.108.081102. arXiv:1110.4142 [nucl-th]

    Article  ADS  Google Scholar 

  28. C. Mondal, B.K. Agrawal, J.N. De, Phys. Rev. C 92, 024302 (2015). https://doi.org/10.1103/PhysRevC.92.024302. arXiv:1507.05384 [nucl-th]

    Article  ADS  Google Scholar 

  29. N. Paar, C.C. Moustakidis, T. Marketin, D. Vretenar, G.A. Lalazissis, Phys. Rev. C 90, 011304 (2014). https://doi.org/10.1103/PhysRevC.90.011304. arXiv:1403.7574 [nucl-th]

    Article  ADS  Google Scholar 

  30. C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 86, 5647 (2001). https://doi.org/10.1103/PhysRevLett.86.5647. arXiv:astro-ph/0010227

    Article  ADS  Google Scholar 

  31. C. Ducoin, J. Margueron, C. Providencia, I. Vidana, Phys. Rev. C 83, 045810 (2011). https://doi.org/10.1103/PhysRevC.83.045810. arXiv:1102.1283 [nucl-th]

    Article  ADS  Google Scholar 

  32. X. Roca-Maza, X. Viñas, M. Centelles, B.K. Agrawal, G. Colo’, N. Paar, J. Piekarewicz, D. Vretenar, Phys. Rev. C 92, 064304 (2015). https://doi.org/10.1103/PhysRevC.92.064304. arXiv:1510.01874 [nucl-th]

    Article  ADS  Google Scholar 

  33. S. Teukolsky, S. Shapiro, (Wiley, 1983)

  34. D. Kobyakov, C.J. Pethick, Phys. Rev. Lett. 112, 112504 (2014). https://doi.org/10.1103/PhysRevLett.112.112504. arXiv:1309.1891 [nucl-th]

    Article  ADS  Google Scholar 

  35. C.P. Lorenz, D.G. Ravenhall, C.J. Pethick, Phys. Rev. Lett. 70, 379 (1993). https://doi.org/10.1103/PhysRevLett.70.379

    Article  ADS  Google Scholar 

  36. D.K. Berry, M.E. Caplan, C.J. Horowitz, G. Huber, A.S. Schneider, Phys. Rev. C 94, 055801 (2016). https://doi.org/10.1103/PhysRevC.94.055801. arXiv:1509.00410 [nucl-th]

    Article  ADS  Google Scholar 

  37. K. Madhuri, D.N. Basu, T.R. Routray, S.P. Pattnaik, Eur. Phys. J. A 53, 151 (2017). https://doi.org/10.1140/epja/i2017-12338-x. arXiv:1611.02872 [nucl-th]

    Article  ADS  Google Scholar 

  38. A.Guerra Chaves, T. Hinderer, J. Phys. G G46, 123002 (2019). https://doi.org/10.1088/1361-6471/ab45be. arXiv:1912.01461 [nucl-th]

    Article  ADS  Google Scholar 

  39. G. Baym, C. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971). https://doi.org/10.1086/151216

    Article  ADS  Google Scholar 

  40. P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002). https://doi.org/10.1126/science.1078070. arXiv:nucl-th/0208016

    Article  ADS  Google Scholar 

  41. C. Fuchs, Prog. Part. Nucl. Phys. 56, 1 (2006). https://doi.org/10.1016/j.ppnp.2005.07.004. arXiv:nucl-th/0507017

    Article  ADS  Google Scholar 

  42. A.F. Fantina, N. Chamel, J.M. Pearson, S. Goriely, EPJ Web Conf. 66, 07005 (2014). https://doi.org/10.1051/epjconf/20146607005

    Article  Google Scholar 

  43. B.P. Abbott (LIGO Scientific, Virgo) et al., Phys. Rev. Lett. 119, 161101 (2017). https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:1710.05832 [gr-qc]

  44. T. Malik, N. Alam, M. Fortin, C. Providência, B.K. Agrawal, T.K. Jha, B. Kumar, S.K. Patra, Phys. Rev. C 98, 035804 (2018a). https://doi.org/10.1103/PhysRevC.98.035804. arXiv:1805.11963 [nucl-th]

    Article  ADS  Google Scholar 

  45. T. Malik, B.K. Agrawal, J.N. De, S.K. Samaddar, C. Providência, C. Mondal, T.K. Jha, Phys. Rev. C 99, 052801 (2019). https://doi.org/10.1103/PhysRevC.99.052801. arXiv:1901.04371 [nucl-th]

    Article  ADS  Google Scholar 

  46. M.B. Tsang, W.G. Lynch, P. Danielewicz, C.Y. Tsang, Phys. Lett. B 795, 533 (2019). https://doi.org/10.1016/j.physletb.2019.06.059. arXiv:1906.02180 [nucl-ex]

    Article  ADS  Google Scholar 

  47. A.  Ekström, (2019). arXiv:1912.02227 [nucl-th]

  48. R. Machleidt, Phys. Rev. C 63, 024001 (2001). https://doi.org/10.1103/PhysRevC.63.024001. arXiv:nucl-th/0006014

    Article  ADS  Google Scholar 

  49. D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001 (2003). https://doi.org/10.1103/PhysRevC.68.041001. arXiv:nucl-th/0304018

    Article  ADS  Google Scholar 

  50. U. van Kolck, Prog. Part. Nucl. Phys. 43, 337 (1999). https://doi.org/10.1016/S0146-6410(99)00097-6. arXiv:nucl-th/9902015

    Article  ADS  Google Scholar 

  51. E. Epelbaum, H.-W. Hammer, U.-G. Meissner, Rev. Mod. Phys. 81, 1773 (2009). https://doi.org/10.1103/RevModPhys.81.1773. arXiv:0811.1338 [nucl-th]

    Article  ADS  Google Scholar 

  52. R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011). https://doi.org/10.1016/j.physrep.2011.02.001. arXiv:1105.2919 [nucl-th]

    Article  ADS  Google Scholar 

  53. D. Lee, Prog. Part. Nucl. Phys. 63, 117 (2009). https://doi.org/10.1016/j.ppnp.2008.12.001. arXiv:0804.3501 [nucl-th]

    Article  ADS  Google Scholar 

  54. B.R. Barrett, P. Navratil, J.P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013). https://doi.org/10.1016/j.ppnp.2012.10.003

    Article  ADS  Google Scholar 

  55. A. Carbone, A. Cipollone, C. Barbieri, A. Rios, A. Polls, Phys. Rev. C 88, 054326 (2013). https://doi.org/10.1103/PhysRevC.88.054326. arXiv:1310.3688 [nucl-th]

    Article  ADS  Google Scholar 

  56. G. Hagen, T. Papenbrock, M. Hjorth-Jensen, D.J. Dean, Rep. Prog. Phys. 77, 096302 (2014). https://doi.org/10.1088/0034-4885/77/9/096302. arXiv:1312.7872 [nucl-th]

    Article  ADS  Google Scholar 

  57. H. Hergert, S.K. Bogner, T.D. Morris, A. Schwenk, K. Tsukiyama, Phys. Rep. 621, 165 (2016). https://doi.org/10.1016/j.physrep.2015.12.007. arXiv:1512.06956 [nucl-th]

    Article  ADS  MathSciNet  Google Scholar 

  58. T.D. Morris, J. Simonis, S.R. Stroberg, C. Stumpf, G. Hagen, J.D. Holt, G.R. Jansen, T. Papenbrock, R. Roth, A. Schwenk, Phys. Rev. Lett. 120, 152503 (2018). https://doi.org/10.1103/PhysRevLett.120.152503. arXiv:1709.02786 [nucl-th]

    Article  ADS  Google Scholar 

  59. J.D. Holt, S.R. Stroberg, A. Schwenk, J. Simonis, (2019). arXiv:1905.10475 [nucl-th]

  60. F. Sammarruca, L. Coraggio, J.W. Holt, N. Itaco, R. Machleidt, L.E. Marcucci, Phys. Rev. C 91, 054311 (2015). https://doi.org/10.1103/PhysRevC.91.054311. arXiv:1411.0136 [nucl-th]

    Article  ADS  Google Scholar 

  61. G. Salvioni, J. Dobaczewski, C. Barbieri, G. Carlsson, A. Idini, A. Pastore, (2020). arXiv:2002.01903 [nucl-th]

  62. L.-W. Chen, B.-J. Cai, C.M. Ko, B.-A. Li, C. Shen, J. Xu, Phys. Rev. C 80, 014322 (2009). https://doi.org/10.1103/PhysRevC.80.014322. arXiv:0905.4323 [nucl-th]

    Article  ADS  Google Scholar 

  63. C. Constantinou, B. Muccioli, M. Prakash, J.M. Lattimer, Phys. Rev. C 89, 065802 (2014). https://doi.org/10.1103/PhysRevC.89.065802. arXiv:1402.6348 [astro-ph.SR]

    Article  ADS  Google Scholar 

  64. I. Vidana, I. Bombaci, Phys. Rev. C 66, 045801 (2002). https://doi.org/10.1103/PhysRevC.66.045801. arXiv:nucl-th/0203061

    Article  ADS  Google Scholar 

  65. C. Gonzalez-Boquera, M. Centelles, X. Viñas, A. Rios, Phys. Rev. C 96, 065806 (2017). https://doi.org/10.1103/PhysRevC.96.065806. arXiv:1706.02736 [nucl-th]

    Article  ADS  Google Scholar 

  66. K.A. Brueckner, D.T. Goldman, Phys. Rev. 116, 424 (1959). https://doi.org/10.1103/PhysRev.116.424

    Article  ADS  Google Scholar 

  67. D. Bandyopadhyay, C. Samanta, S.K. Samaddar, J.N. De, Nucl. Phys. A 511, 1 (1990). https://doi.org/10.1016/0375-9474(90)90024-G

    Article  ADS  Google Scholar 

  68. A. Bohr, B.R. Mottelson, vol. II (W. A. Benjamin, New York, 1975)

  69. B.G. Todd-Rutel, J. Piekarewicz, Phys. Rev. Lett. 95, 122501 (2005). https://doi.org/10.1103/PhysRevLett.95.122501. arXiv:nucl-th/0504034

    Article  ADS  Google Scholar 

  70. T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 78, 034318 (2008). https://doi.org/10.1103/PhysRevC.78.034318. arXiv:0809.1375 [nucl-th]

    Article  ADS  Google Scholar 

  71. P. Avogadro, C.A. Bertulani, Phys. Rev. C 88, 044319 (2013). https://doi.org/10.1103/PhysRevC.88.044319. arXiv:1305.7299 [nucl-th]

    Article  ADS  Google Scholar 

  72. D.H. Youngblood, Y.W. Lui, H.L. Clark, B. John, Y. Tokimoto, X. Chen, Phys. Rev. C 69, 034315 (2004). https://doi.org/10.1103/PhysRevC.69.034315

    Article  ADS  Google Scholar 

  73. G. Colo, N. Van Giai, J. Meyer, K. Bennaceur, P. Bonche, Phys. Rev. C 70, 024307 (2004). https://doi.org/10.1103/PhysRevC.70.024307. arXiv:nucl-th/0403086

    Article  ADS  Google Scholar 

  74. N. Wang, Z. Liang, M. Liu, X. Wu, Phys. Rev. C 82, 044304 (2010). https://doi.org/10.1103/PhysRevC.82.044304. arXiv:1008.2115 [nucl-th]

    Article  ADS  Google Scholar 

  75. P. Danielewicz, J. Lee, Nucl. Phys. A 922, 1 (2014). https://doi.org/10.1016/j.nuclphysa.2013.11.005. arXiv:1307.4130 [nucl-th]

    Article  ADS  Google Scholar 

  76. M.B. Tsang et al., Phys. Rev. C 86, 015803 (2012). https://doi.org/10.1103/PhysRevC.86.015803. arXiv:1204.0466 [nucl-ex]

    Article  ADS  Google Scholar 

  77. J.M. Lattimer, M. Prakash, Phys. Rep. 621, 127 (2016). https://doi.org/10.1016/j.physrep.2015.12.005. arXiv:1512.07820 [astro-ph.SR]

    Article  ADS  MathSciNet  Google Scholar 

  78. L.-W. Chen, C.M. Ko, B.-A. Li, Phys. Rev. Lett. 94, 032701 (2005). https://doi.org/10.1103/PhysRevLett.94.032701. arXiv:nucl-th/0407032

    Article  ADS  Google Scholar 

  79. B.-A. Li, L.-W. Chen, C.M. Ko, Phys. Rept. 464, 113 (2008). https://doi.org/10.1016/j.physrep.2008.04.005. arXiv:0804.3580 [nucl-th]

    Article  ADS  Google Scholar 

  80. D.V. Shetty, S.J. Yennello, G.A. Souliotis, Phys. Rev. C 76, 024606 (2007). https://doi.org/10.1103/PhysRevC.76.024606. https://doi.org/10.1103/PhysRevC.76.039902. (Erratum: Phys. Rev.C 76, 039902 (2007)). arXiv:0704.0471 [nucl-ex]

  81. P. Souder, https://hallaweb.jlab.org/collab/PAC/PAC38/prexII.pdf Prex-ii, proposal to jefferson lab pac 38

  82. S. Riordan, http://hallaweb.jlab.org/parity/prex/c-rex2013_v7.pdf Crex, proposal to jefferson lab pac 40

  83. M. Dutra, O. Lourenco, J.S.S. Martins, A. Delfino, J.R. Stone, P.D. Stevenson, Phys. Rev. C 85, 035201 (2012). https://doi.org/10.1103/PhysRevC.85.035201. arXiv:1202.3902 [nucl-th]

    Article  ADS  Google Scholar 

  84. M. Dutra, O. Lourenço, S.S. Avancini, B.V. Carlson, A. Delfino, D.P. Menezes, C. Providência, S. Typel, J.R. Stone, Phys. Rev. C 90, 055203 (2014). https://doi.org/10.1103/PhysRevC.90.055203. arXiv:1405.3633 [nucl-th]

    Article  ADS  Google Scholar 

  85. P. Danielewicz, J. Lee, Nucl. Phys. A 818, 36 (2009). https://doi.org/10.1016/j.nuclphysa.2008.11.007. arXiv:0807.3743 [nucl-th]

    Article  ADS  Google Scholar 

  86. I. Tews, J.M. Lattimer, A. Ohnishi, E.E. Kolomeitsev, Astrophys. J. 848, 105 (2017). https://doi.org/10.3847/1538-4357/aa8db9. arXiv:1611.07133 [nucl-th]

    Article  ADS  Google Scholar 

  87. C. Mondal, B.K. Agrawal, J.N. De, S.K. Samaddar, Int. J. Mod. Phys. E 27, 1850078 (2018). https://doi.org/10.1142/S0218301318500787. arXiv:1809.05354 [nucl-th]

    Article  ADS  Google Scholar 

  88. Z. Zhang, L.-W. Chen, Phys. Rev. C 93, 034335 (2016). https://doi.org/10.1103/PhysRevC.93.034335. arXiv:1507.04675 [nucl-th]

    Article  ADS  Google Scholar 

  89. D.D.S. Coupland, M. Youngs, Z. Chajecki, W.G. Lynch, M.B. Tsang, Y.X. Zhang, M.A. Famiano, T.K. Ghosh, B. Giacherio, M.A. Kilburn, J. Lee, H. Liu, F. Lu, P. Morfouace, P. Russotto, A. Sanetullaev, R.H. Showalter, G. Verde, J. Winkelbauer, Phys. Rev. C 94, 011601 (2016). https://doi.org/10.1103/PhysRevC.94.011601

    Article  ADS  Google Scholar 

  90. H.-Y. Kong, J. Xu, L.-W. Chen, B.-A. Li, Y.-G. Ma, Phys. Rev. C 95, 034324 (2017). https://doi.org/10.1103/PhysRevC.95.034324

    Article  ADS  Google Scholar 

  91. T. Malik, C. Mondal, B.K. Agrawal, J.N. De, S.K. Samaddar, Phys. Rev. C 98, 064316 (2018b). https://doi.org/10.1103/PhysRevC.98.064316. arXiv:1811.09077 [nucl-th]

    Article  ADS  Google Scholar 

  92. C. Mondal, B.K. Agrawal, J.N. De, S.K. Samaddar, M. Centelles, X. Viñas, Phys. Rev. C 96, 021302 (2017). https://doi.org/10.1103/PhysRevC.96.021302. arXiv:1708.03846 [nucl-th]

    Article  ADS  Google Scholar 

  93. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998). https://doi.org/10.1103/PhysRevC.58.1804. arXiv:nucl-th/9804027

    Article  ADS  Google Scholar 

  94. G. Taranto, M. Baldo, G.F. Burgio, Phys. Rev. C 87, 045803 (2013). https://doi.org/10.1103/PhysRevC.87.045803. arXiv:1302.6882 [nucl-th]

    Article  ADS  Google Scholar 

  95. M. Baldo, L.M. Robledo, P. Schuck, X. Vinas, Phys. Rev. C 87, 064305 (2013). https://doi.org/10.1103/PhysRevC.87.064305. arXiv:1210.1321 [nucl-th]

    Article  ADS  Google Scholar 

  96. B.K. Agrawal, S.K. Samaddar, J.N. De, C. Mondal, S. De, Int. J. Mod. Phys. E 26, 1750022 (2017). https://doi.org/10.1142/S0218301317500227. arXiv:1703.03549 [nucl-th]

    Article  ADS  Google Scholar 

  97. R. Sellahewa, A. Rios, Phys. Rev. C 90, 054327 (2014). https://doi.org/10.1103/PhysRevC.90.054327. arXiv:1407.8138 [nucl-th]

    Article  ADS  Google Scholar 

  98. J. Margueron, R. Hoffmann Casali, F. Gulminelli, Phys. Rev. C 97, 025805 (2018a). https://doi.org/10.1103/PhysRevC.97.025805. arXiv:1708.06894 [nucl-th]

    Article  ADS  Google Scholar 

  99. M. Dutra, B.M. Santos, O. Lourenço, J. Phys. G 47, 035101 (2020). https://doi.org/10.1088/1361-6471/ab5774. arXiv:2002.02437 [nucl-th]

    Article  ADS  Google Scholar 

  100. M. Jaminon, C. Mahaux, Phys. Rev. C 40, 354 (1989). https://doi.org/10.1103/PhysRevC.40.354

    Article  ADS  Google Scholar 

  101. X.-H. Li, W.-J. Guo, B.-A. Li, L.-W. Chen, F.J. Fattoyev, W.G. Newton, Phys. Lett. B 743, 408 (2015). https://doi.org/10.1016/j.physletb.2015.03.005. arXiv:1403.5577 [nucl-th]

    Article  ADS  Google Scholar 

  102. O. Bohigas, A.M. Lane, J. Martorell, Phys. Rep. 51, 267 (1979). https://doi.org/10.1016/0370-1573(79)90079-6

    Article  ADS  Google Scholar 

  103. N. Hinohara, M. Kortelainen, W. Nazarewicz, E. Olsen, Phys. Rev. C 91, 044323 (2015). https://doi.org/10.1103/PhysRevC.91.044323. arXiv:1501.06994 [nucl-th]

    Article  ADS  Google Scholar 

  104. W. Myers, W. Swiatecki, Ann. Phys. 84, 186 (1974). https://doi.org/10.1016/0003-4916(74)90299-1

    Article  ADS  Google Scholar 

  105. J. Meyer, P. Quentin, B.K. Jennings, Nucl. Phys. A 385, 269 (1982). https://doi.org/10.1016/0375-9474(82)90172-5

    Article  ADS  Google Scholar 

  106. X. Roca-Maza, M. Centelles, X. Viñas, M. Brenna, G. Colò, B.K. Agrawal, N. Paar, J. Piekarewicz, D. Vretenar, Phys. Rev. C 88, 024316 (2013b). https://doi.org/10.1103/PhysRevC.88.024316. arXiv:1307.4806 [nucl-th]

    Article  ADS  Google Scholar 

  107. M. Centelles, X. Roca-Maza, X. Vinas, M. Warda, Phys. Rev. C 82, 054314 (2010). https://doi.org/10.1103/PhysRevC.82.054314. arXiv:1010.5396 [nucl-th]

    Article  ADS  Google Scholar 

  108. A. Tamii et al., Phys. Rev. Lett. 107, 062502 (2011). https://doi.org/10.1103/PhysRevLett.107.062502. arXiv:1104.5431 [nucl-ex]

    Article  ADS  Google Scholar 

  109. P.G. Reinhard, W. Nazarewicz, Phys. Rev. C 81, 051303 (2010). https://doi.org/10.1103/PhysRevC.81.051303. arXiv:1002.4140 [nucl-th]

    Article  ADS  Google Scholar 

  110. J. Birkhan et al., Phys. Rev. Lett. 118, 252501 (2017). https://doi.org/10.1103/PhysRevLett.118.252501. arXiv:1611.07072 [nucl-ex]

    Article  ADS  Google Scholar 

  111. T. Hashimoto et al., Phys. Rev. C 92, 031305 (2015). https://doi.org/10.1103/PhysRevC.92.031305. arXiv:1503.08321 [nucl-ex]

    Article  ADS  Google Scholar 

  112. D.M. Rossi et al., Phys. Rev. Lett. 111, 242503 (2013). https://doi.org/10.1103/PhysRevLett.111.242503

    Article  ADS  Google Scholar 

  113. E. Chabanat, J. Meyer, P. Bonche, R. Schaeffer, P. Haensel, Nucl. Phys. A 627, 710 (1997). https://doi.org/10.1016/S0375-9474(97)00596-4

    Article  ADS  Google Scholar 

  114. B.A. Brown, Phys. Rev. Lett. 111, 232502 (2013). https://doi.org/10.1103/PhysRevLett.111.232502. arXiv:1308.3664 [nucl-th]

    Article  ADS  Google Scholar 

  115. G.E. Brown, M. Rho, Nucl. Phys. A 338, 269 (1980). https://doi.org/10.1016/0375-9474(80)90033-0

    Article  ADS  Google Scholar 

  116. D. Davesne, J. Navarro, J. Meyer, K. Bennaceur, A. Pastore, Phys. Rev. C 97, 044304 (2018). https://doi.org/10.1103/PhysRevC.97.044304. arXiv:1712.03003 [nucl-th]

    Article  ADS  Google Scholar 

  117. B. Friedman, V.R. Pandharipande, Nucl. Phys. A 361, 502 (1981). https://doi.org/10.1016/0375-9474(81)90649-7

    Article  ADS  Google Scholar 

  118. R.B. Wiringa, V. Fiks, A. Fabrocini, Phys. Rev. C 38, 1010 (1988). https://doi.org/10.1103/PhysRevC.38.1010

    Article  ADS  Google Scholar 

  119. W. Zuo, I. Bombaci, U. Lombardo, Phys. Rev. C 60, 024605 (1999). https://doi.org/10.1103/PhysRevC.60.024605. arXiv:nucl-th/0102035

    Article  ADS  Google Scholar 

  120. J.R. Stone, P.G. Reinhard, Prog. Part. Nucl. Phys. 58, 587 (2007). https://doi.org/10.1016/j.ppnp.2006.07.001. arXiv:nucl-th/0607002

    Article  ADS  Google Scholar 

  121. C. Drischler, K. Hebeler, A. Schwenk, Phys. Rev. C 93, 054314 (2016). https://doi.org/10.1103/PhysRevC.93.054314. arXiv:1510.06728 [nucl-th]

    Article  ADS  Google Scholar 

  122. N. Hornick, L. Tolos, A. Zacchi, J.-E. Christian, J. Schaffner-Bielich, Phys. Rev. C 98, 065804 (2018). https://doi.org/10.1103/PhysRevC.98.065804. arXiv:1808.06808 [astro-ph.HE]

    Article  ADS  Google Scholar 

  123. J. Antoniadis et al., Science 340, 6131 (2013). https://doi.org/10.1126/science.1233232. arXiv:1304.6875 [astro-ph.HE]

    Article  ADS  Google Scholar 

  124. P. Demorest, T. Pennucci, S. Ransom, M. Roberts, J. Hessels, Nature 467, 1081 (2010). https://doi.org/10.1038/nature09466. arXiv:1010.5788 [astro-ph.HE]

    Article  ADS  Google Scholar 

  125. L. Rezzolla, E.R. Most, L.R. Weih, Astrophys. J. (2018). https://doi.org/10.3847/2041-8213/aaa401. arXiv:1711.00314 [astro-ph.HE]

    Article  Google Scholar 

  126. H.T. Cromartie et al., Nat. Astron. 4, 72 (2019). https://doi.org/10.1038/s41550-019-0880-2. arXiv:1904.06759 [astro-ph.HE]

    Article  ADS  Google Scholar 

  127. I. Vidana, C. Providencia, A. Polls, A. Rios, Phys. Rev. C 80, 045806 (2009). https://doi.org/10.1103/PhysRevC.80.045806. arXiv:0907.1165 [nucl-th]

    Article  ADS  Google Scholar 

  128. C. Ducoin, J. Margueron, C. Providencia, EPL 91, 32001 (2010). https://doi.org/10.1209/0295-5075/91/32001. arXiv:1004.5197 [nucl-th]

    Article  ADS  Google Scholar 

  129. W.G. Newton, M. Gearheart, B.-A. Li, Astrophys. J. Suppl. 204, 9 (2013). https://doi.org/10.1088/0067-0049/204/1/9. arXiv:1110.4043 [astro-ph.SR]

    Article  ADS  Google Scholar 

  130. F.J. Fattoyev, W.G. Newton, B.-A. Li, Phys. Rev. C 90, 022801 (2014). https://doi.org/10.1103/PhysRevC.90.022801. arXiv:1405.0750 [nucl-th]

    Article  ADS  Google Scholar 

  131. H. Sotani, K. Iida, K. Oyamatsu, Phys. Rev. C 91, 015805 (2015). https://doi.org/10.1103/PhysRevC.91.015805. arXiv:1501.01698 [astro-ph.HE]

    Article  ADS  Google Scholar 

  132. F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, G. Shen, Phys. Rev. C 82, 055803 (2010). https://doi.org/10.1103/PhysRevC.82.055803. arXiv:1008.3030 [nucl-th]

    Article  ADS  Google Scholar 

  133. J.G. Martinez, K. Stovall, P.C.C. Freire, J.S. Deneva, F.A. Jenet, M.A. McLaughlin, M. Bagchi, S.D. Bates, A. Ridolfi, Astrophys. J. 812, 143 (2015). https://doi.org/10.1088/0004-637X/812/2/143. arXiv:1509.08805 [astro-ph.HE]

    Article  ADS  Google Scholar 

  134. N. Alam, B.K. Agrawal, M. Fortin, H. Pais, C. Providência, A.R. Raduta, A. Sulaksono, Phys. Rev. C 94, 052801 (2016). https://doi.org/10.1103/PhysRevC.94.052801. arXiv:1610.06344 [nucl-th]

    Article  ADS  Google Scholar 

  135. E.E. Flanagan, T. Hinderer, Phys. Rev. D 77, 021502 (2008). https://doi.org/10.1103/PhysRevD.77.021502. arXiv:0709.1915 [astro-ph]

    Article  ADS  Google Scholar 

  136. T. Hinderer, Astrophys. J. 677, 1216 (2008). https://doi.org/10.1086/533487. arXiv:0711.2420 [astro-ph]

    Article  ADS  Google Scholar 

  137. T. Hinderer, B.D. Lackey, R.N. Lang, J.S. Read, Phys. Rev. D 81, 123016 (2010). https://doi.org/10.1103/PhysRevD.81.123016. arXiv:0911.3535 [astro-ph.HE]

    Article  ADS  Google Scholar 

  138. T. Damour, A. Nagar, L. Villain, Phys. Rev. D 85, 123007 (2012). https://doi.org/10.1103/PhysRevD.85.123007. arXiv:1203.4352 [gr-qc]

    Article  ADS  Google Scholar 

  139. S.W. Hawking, W. Israel, eds. (1987)

  140. J.S. Read, C. Markakis, M. Shibata, K. Uryu, J.D.E. Creighton, J.L. Friedman, Phys. Rev. D 79, 124033 (2009). https://doi.org/10.1103/PhysRevD.79.124033. arXiv:0901.3258 [gr-qc]

    Article  ADS  Google Scholar 

  141. E. Annala, T. Gorda, A. Kurkela, A. Vuorinen, Phys. Rev. Lett. 120, 172703 (2018). https://doi.org/10.1103/PhysRevLett.120.172703. arXiv:1711.02644 [astro-ph.HE]

    Article  ADS  Google Scholar 

  142. S.  De, D.  Finstad, J.M. Lattimer, D.A. Brown, E.  Berger, C.M. Biwer, Phys. Rev. Lett. 121, 091102 (2018). https://doi.org/10.1103/PhysRevLett.121.259902, https://doi.org/10.1103/PhysRevLett.121.091102. (Erratum: Phys. Rev. Lett. 121, no. 25, 259902 (2018)). arXiv:1804.08583 [astro-ph.HE]

  143. F.J. Fattoyev, J. Piekarewicz, C.J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018). https://doi.org/10.1103/PhysRevLett.120.172702. arXiv:1711.06615 [nucl-th]

    Article  ADS  Google Scholar 

  144. S.  Weinberg, (Wiley, New York, 1972)

  145. S. Postnikov, M. Prakash, J.M. Lattimer, Phys. Rev. D 82, 024016 (2010). https://doi.org/10.1103/PhysRevD.82.024016. arXiv:1004.5098 [astro-ph.SR]

    Article  ADS  Google Scholar 

  146. B.P. Abbott et al. (KAGRA, LIGO Scientific, VIRGO), Living Rev. Rel. 21(3) (2018). https://doi.org/10.1007/s41114-018-0012-9, https://doi.org/10.1007/lrr-2016-1. arXiv:1304.0670 [gr-qc]

  147. B.P. Abbott et al. (LIGO Scientific, Virgo), Phys. Rev. Lett. 123, 011102 (2019). https://doi.org/10.1103/PhysRevLett.123.011102. arXiv:1811.00364 [gr-qc]

  148. T.E. Riley et al., Astrophys. J. 887, L21 (2019). https://doi.org/10.3847/2041-8213/ab481c. arXiv:1912.05702 [astro-ph.HE]

    Article  ADS  Google Scholar 

  149. G. Raaijmakers et al., Astrophys. J. 887, L22 (2019). https://doi.org/10.3847/2041-8213/ab451a. arXiv:1912.05703 [astro-ph.HE]

    Article  ADS  Google Scholar 

  150. M.C. Miller et al., Astrophys. J. 887, L24 (2019). https://doi.org/10.3847/2041-8213/ab50c5. arXiv:1912.05705 [astro-ph.HE]

    Article  ADS  Google Scholar 

  151. N.-B. Zhang, B.-A. Li, J. Xu, Astrophys. J. 859, 90 (2018a). https://doi.org/10.3847/1538-4357/aac027. arXiv:1801.06855 [nucl-th]

    Article  ADS  Google Scholar 

  152. J. Margueron, R. Hoffmann Casali, F. Gulminelli, Phys. Rev. C97, 025806 (2018b). https://doi.org/10.1103/PhysRevC.97.025806. arXiv:1708.06895 [nucl-th]

    Article  ADS  Google Scholar 

  153. J. Margueron, F. Gulminelli, Phys. Rev. C 99, 025806 (2019). https://doi.org/10.1103/PhysRevC.99.025806. arXiv:1807.01729 [nucl-th]

    Article  ADS  Google Scholar 

  154. M. Ferreira, M. Fortin, T. Malik, B.K. Agrawal, C. Providência, Phys. Rev. D 101, 043021 (2020). https://doi.org/10.1103/PhysRevD.101.043021. arXiv:1912.11131 [nucl-th]

    Article  ADS  Google Scholar 

  155. I. Tews, J. Margueron, S. Reddy, Phys. Rev. C 98, 045804 (2018). https://doi.org/10.1103/PhysRevC.98.045804. arXiv:1804.02783 [nucl-th]

    Article  ADS  Google Scholar 

  156. Y. Lim, J.W. Holt, Phys. Rev. Lett. 121, 062701 (2018). https://doi.org/10.1103/PhysRevLett.121.062701. arXiv:1803.02803 [nucl-th]

    Article  ADS  Google Scholar 

  157. I. Tews, J. Margueron, S. Reddy, Eur. Phys. J. A 55, 97 (2019). https://doi.org/10.1140/epja/i2019-12774-6. arXiv:1901.09874 [nucl-th]

    Article  ADS  Google Scholar 

  158. Y. Lim, J.W. Holt, Eur. Phys. J. A 55, 209 (2019). https://doi.org/10.1140/epja/i2019-12917-9. arXiv:1902.05502 [nucl-th]

    Article  ADS  Google Scholar 

  159. Z. Zhang, Y. Lim, J.W. Holt, C.M. Ko, Phys. Lett. B 777, 73 (2018b). https://doi.org/10.1016/j.physletb.2017.12.012. arXiv:1703.00866 [nucl-th]

    Article  ADS  Google Scholar 

  160. J. Dobaczewski, W. Nazarewicz, P.G. Reinhard, J. Phys. G41, 074001 (2014). https://doi.org/10.1088/0954-3899/41/7/074001. arXiv:1402.4657 [nucl-th]

    Article  ADS  Google Scholar 

  161. A. Sabatucci, O. Benhar, (2020). arXiv:2001.06294 [nucl-th]

  162. J. Bonnard, M. Grasso, D. Lacroix, (2020). arXiv:2001.08082 [nucl-th]

  163. K. Hebeler, J.M. Lattimer, C.J. Pethick, A. Schwenk, Astrophys. J. 773, 11 (2013). https://doi.org/10.1088/0004-637X/773/1/11. arXiv:1303.4662 [astro-ph.SR]

    Article  ADS  Google Scholar 

  164. M.B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W.G. Lynch, A.W. Steiner, Phys. Rev. Lett. 102, 122701 (2009). https://doi.org/10.1103/PhysRevLett.102.122701. arXiv:0811.3107 [nucl-ex]

    Article  ADS  Google Scholar 

  165. P. Russotto et al., Phys. Rev. C 94, 034608 (2016). https://doi.org/10.1103/PhysRevC.94.034608. arXiv:1608.04332 [nucl-ex]

    Article  ADS  Google Scholar 

  166. M. Oertel, M. Hempel, T. Klähn, S. Typel, Rev. Mod. Phys. 89, 015007 (2017). https://doi.org/10.1103/RevModPhys.89.015007. arXiv:1610.03361 [astro-ph.HE]

    Article  ADS  Google Scholar 

  167. J.M. Lattimer, Y. Lim, Astrophys. J. 771, 51 (2013). https://doi.org/10.1088/0004-637X/771/1/51. arXiv:1203.4286 [nucl-th]

    Article  ADS  Google Scholar 

  168. J. Zimmerman, Z. Carson, K. Schumacher, A.W. Steiner, K. Yagi (2020). arXiv:2002.03210 [astro-ph.HE]

Download references

Acknowledgements

The authors acknowledge the contribution of many collaborators, who over many years were instrumental in helping to develop the ideas that we threaded in this review. The authors are extremely thankful to Tanuja Agrawal for her assistance in the preparation of the manuscript. T. M. acknowledges the hospitality extended to him by Saha Institute of Nuclear Physics during the course of this work. J. N. D. acknowledges support from the Department of Science and Technology, Government of India, with Grant no. EMR/2016/001512.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Agrawal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, B.K., Malik, T., De, J.N. et al. Constraining nuclear matter parameters from correlation systematics: a mean-field perspective. Eur. Phys. J. Spec. Top. 230, 517–542 (2021). https://doi.org/10.1140/epjs/s11734-021-00001-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00001-7

Navigation