Skip to main content
Log in

Small amplitude ion-acoustic solitary waves in a magnetized ion-beam plasma under the effect of ion and beam temperatures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present research of magnetized plasmas, both rarefactive and compressive solitons are found to exist, based on the values of certain parameters. It has been shown in the present investigation that inclusion of beam temperature into the plasma is in search of the existence of both slow and fast modes for both the cases \(Q^{\prime} < 1\) and \(Q^{\prime} > 1\). Furthermore, it is noteworthy to point out that the ion-acoustic soliton is found to exist for \(\gamma = \frac{{U_{d} \sin \theta }}{M} = \,\,\frac{{\text{beam velocity}}}{{\text{phase velocity}}} = 1\) as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

This manuscript has associated data in a data repository. [Authors’ comment: Inquiries about data availability should be directed to the authors.]

References

  1. L.A. Ostrovskii, V.I. Petrukhina, S.M. Fainshtein, Amplification of ion-acoustic solitons by a beam of charged particles. Sov. Phys. JETP 42, 1041–1043 (1975)

    ADS  Google Scholar 

  2. D. Gresillon, F. Doveil, Normal modes in the ion-beam-plasma system. Phys. Rev. Lett. 34, 77–80 (1975)

    Article  ADS  Google Scholar 

  3. Y. Gell, I. Roth, The effects of an ion beam on the motion of solitons in an ion-beam plasma system. Plasma Phys. 19, 915–924 (1977)

    Article  ADS  Google Scholar 

  4. P.S. Abrol, S.G. Tagare, Ion-acoustic solitary waves in an ion–beam-plasma system with nonisothermal electrons. Phys. Lett. A 75, 74–76 (1979)

    Article  ADS  Google Scholar 

  5. P.S. Abrol, S.G. Tagare, Ion-beam generated ion-acoustic solitons in beam plasma system with non-isothermal electrons. Plasma Phys. 22, 831–841 (1980)

    Article  ADS  Google Scholar 

  6. P.S. Abrol, S.G. Tagare, Ionic thermal effects on solitons in a plasma with ion beam. Plasma Phys. 23, 651–656 (1981)

    Article  ADS  Google Scholar 

  7. N. Yajima, M. Kono, S. Ueda, Soliton and nonlinear explosion modes in an ion-beam plasma system. J. Phys. Soc. Jpn. 52, 3414–3423 (1983)

    Article  ADS  Google Scholar 

  8. B.C. Kalita, M.K. Kalita, J. Chutia, Drifting effect of electrons on fully non-linear ion-acoustic waves in a magnetoplasma. Phys. A Math. Gen. 19, 3559–3563 (1986)

    Article  ADS  MATH  Google Scholar 

  9. B. Karmakar, G.C. Das, K.H.I. Singh, Ion-acoustic solitary waves in ion-beam plasma with multiple-electron-temperatures. Plasma Phys. Control. Fusion 30, 1167–1174 (1988)

    Article  ADS  Google Scholar 

  10. G.P. Zank, J.F. McKenzie, Solitons in an ion-beam plasma. J. Plasma Phys. 39, 183–191 (1988)

    Article  ADS  Google Scholar 

  11. G.P. Zank, J.F. McKenzie, Properties of waves in an ion-beam plasma system. J. Plasma Phys. 39, 193–213 (1988)

    Article  ADS  Google Scholar 

  12. K. Naidu, G.P. Zank, J.F. McKenzie, Wave properties of an ion-beam system with a strong magnetic field. J. Plasma Phys. 43, 385–396 (1990)

    Article  ADS  Google Scholar 

  13. H.H. Kuehl, C.Y. Zhang, Effects of ion drift on small-amplitude ion-acoustic solitons. Phys. Fluids B 3, 26–28 (1991)

    Article  ADS  Google Scholar 

  14. B.C. Kalita, M.K. Kalita, R.P. Bhatta, Solitons in a magnetized ion-beam plasma system. J. Plasma Phys. 50, 349–357 (1993)

    Article  ADS  Google Scholar 

  15. Y. Nakamura, K. Ohtani, Solitary waves in an ion-beam-plasma system. J. Plasma Phys. 53, 235–244 (1995)

    Article  ADS  Google Scholar 

  16. P. Chatterjee, R. Roychoudhury, Ion acoustic soliton in an electron beam plasma. Z. Naturforsch. 51(a), 1002–1006 (1996)

    Article  ADS  Google Scholar 

  17. Y. Nakamura, K. Komatsuda, Observation of solitary waves in an ion-beam-plasma system. J. Plasma Phys. 60, 69–80 (1998)

    Article  ADS  Google Scholar 

  18. Y. Nakamura, Solitary waves in a positive ion-beam-quasi-neutral three-component plasma system. Plasma Phys. Control. Fusion 41, A469–A476 (1999)

    Article  ADS  Google Scholar 

  19. H. Hasegawa, S. Ishiguro, M. Okamoto, Particle acceleration by a large-amplitude wave associated with an ion beam in a magnetized plasma. J. Plasma Phys. 72, 941–944 (2006)

    Article  ADS  Google Scholar 

  20. B. Sen, P. Chatterjee, Speed and shape of large-amplitude solitary waves in ion beam plasma system. Czechoslov. J. Phys. 56, 1429–1436 (2006)

    Article  ADS  Google Scholar 

  21. S. Islam, A. Bandyopadhyay, K.P. Das, Ion-acoustic solitary waves in a multi-species magnetized plasma consisting of non-thermal and isothermal electrons. J. Plasma Phys. 74, 765–806 (2008)

    Article  ADS  Google Scholar 

  22. B.C. Kalita, S.N. Barman, Effect of ion and ion-beam mass ratio on the formation of ion-acoustic solitons in magnetized plasma in the presence of electron inertia. Phys. Plasmas 16, 052101 (2009)

    Article  ADS  Google Scholar 

  23. B. Das, D.K. Ghosh, P. Chatterjee, Large-amplitude double layers in a dusty plasma with an arbitrary streaming ion beam. Pramana J. Phys. 74, 973–981 (2010)

    Article  ADS  Google Scholar 

  24. B.C. Kalita, R. Das, H.K. Sarmah, Weakly relativistic effect in the formation of ion-acoustic solitary waves in a positive ion-beam plasma. Can. J. Phys. 88, 157–164 (2010)

    Article  ADS  Google Scholar 

  25. B.C. Kalita, R. Das, H.K. Sarmah, Weakly relativistic solitons in a magnetized ion-beam plasma in presence of electron inertia. Phys. Plasmas 18, 012304 (2011)

    Article  ADS  Google Scholar 

  26. R. Das, Effect of ion temperature on small-amplitude ion-acoustic solitons in a magnetized ion-beam plasma in presence of electron inertia. Astrophys. Space Sci. 341, 543–549 (2012)

    Article  ADS  Google Scholar 

  27. E. Okutsu, M. Nakamura, Y. Nakamura, T. Itoh, Amplification of ion-acoustic solitons by an ion beam. Plasma Phys. 20, 561 (1978)

    Article  ADS  Google Scholar 

  28. S.G. Lee, D.A. Diebold, N. Hershkowitz, P. Moroz, Wide solitons in an ion-beam–plasma system. Phys. Rev. Lett. 77, 1290 (1996)

    Article  ADS  Google Scholar 

  29. Vette, J. I.: Summary of particle population in the magnetosphere, particles and fields in the magnetosphere, D. Reidel, Dordrecht, The Netherlands, pp. 305 (1970)

  30. C. Grabbe, Wave propagation effects of broadband electrostatic noise in the magnetotail. J. Geophys. Res. 94, 17299 (1989)

    Article  ADS  Google Scholar 

  31. P. Chatterjee, B. Das, C.S. Wong, Dust acoustic solitary waves in a dusty plasma with variable dust charge and an arbitrary streaming ion beam. Indian J. Phys. 86, 529–533 (2012)

    Article  ADS  Google Scholar 

  32. P. Chatterjee, R. Roychoudhury, The effect of finite ion temperature on solitary waves in a plasma with an ion beam. Phys. Plasmas 2, 1352 (1995)

    Article  ADS  Google Scholar 

  33. M. Berthomier, R. Pottelette, M. Malingre, Electron-acoustic solitons in an electron-beam plasma system. Plasma Phys. 7, 2987 (2000)

    Article  Google Scholar 

  34. H.R. Miller, P.J. Witta, Active Galactic Nuclei (Springer, Germany, 1978)

    Google Scholar 

  35. F.C. Michel, Theory of pulsar magnetospheres. Rev. Mod. Phys. 54, 1 (1982)

    Article  ADS  Google Scholar 

  36. P.K. Shukla, G. Brodin, M. Marklund, L. Steno, Wake field generation and nonlinear evolution in a magnetized electron-positron-ion plasma. Phys. Plasmas 15, 082305 (2008)

    Article  ADS  Google Scholar 

  37. S.A. El-Tantawy, M. Tribeche, W.M. Moslem, Nonlinear structures in a nonextensive electron-positron-ion magnetoplasma. Phys. Plasmas 19, 032104 (2012)

    Article  ADS  Google Scholar 

  38. S.V. Singh, S. Devanandhan, G.S. Lakhina, R. Bharuthram, Effect of ion temperature on ion-acoustic solitary waves in a magnetized plasma in presence of superthermal electrons. Phys. Plasmas 20, 012306 (2013)

    Article  ADS  Google Scholar 

  39. H. Alinejad, A.A. Mamun, Oblique propagation of electrostatic waves in a magnetized electron-positron-ion plasma with superthermal electrons. Phys. Plasmas 18, 112103 (2011)

    Article  ADS  Google Scholar 

  40. M. Fedousi, S. Sultana, A.A. Mamun, Oblique propagation of ion-acoustic solitary waves in a magnetized electron-positron-ion plasma. Phys. Plasmas 22, 032117 (2015)

    Article  ADS  Google Scholar 

  41. Mahmood, S., Mushtaq, A., Saleem, H.: Ion-acoustic solitary wave in homogeneous magnetized electron-positron-ion plasmas. New J. Phys. 5, 28.1 – 28.10 (2003)

  42. V.I. Berezhiani, M.Y. El-Ashry, U.A. Moz, Theory of strong-electromagnetic-wave propagation in an electron-positron-ion plasma. Phys. Rev. E 50, 448 (1994)

    Article  ADS  Google Scholar 

  43. N. Jehan, M. Salahuddin, H. Saleem, A.M. Mirza, Modulation instability of low-frequency electrostatic ion waves in magnetized electron-positron-ion plasma. Phys. Plasmas 15, 092301 (2008)

    Article  ADS  Google Scholar 

  44. K. Mio, T. Ogino, K. Minami, S. Taked, Modulation instability and envelope-solitons for nonlinear Alfven waves propagating along the magnetic field in plasmas. Phys. Society Japan 41, 667 (1976)

    Article  ADS  Google Scholar 

  45. T. Intrator, N. Hershkowitz, R. Stern, Beam – plasma interactions in a positive ion – negative ion plasma. Phys. Fluids 26, 1942–1948 (1983)

    Article  ADS  Google Scholar 

  46. H.R. Pakzad, K. Javidan, Obliquely propagating electron acoustic solitons in magnetized plasmas with nonextensive electrons. Nonlinear Processes Geophys. 20, 249–255 (2013)

    Article  ADS  Google Scholar 

  47. B. Ghosh, S. Banerjee, Amplitude modulation of ion-acoustic waves in magnetized electron-positron-ion plasma with q-nonextensive electrons and positrons. Turk. J. Phys. 40, 1–11 (2016)

    Article  Google Scholar 

  48. S. Sultana, Ion acoustic solitons in magnetized collisional non-thermal dusty plasmas. Phys. Lett. A 382, 1368 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. T. Kamalam, S.S. Ghosh, Ion acoustic super solitary waves in a magnetized plasma. Phys. Plasmas 25, 122302 (2018)

    Article  ADS  Google Scholar 

  50. S.Y. El-Monier, A. Atteya, Obliquely propagating nonlinear ion-acoustic solitary and cnoidal waves in nonrelativistic magnetized pair-ion plasma with superthermal electrons. AIP Adv. 9, 045306 (2019)

    Article  ADS  Google Scholar 

  51. K. Emmanuel, L. Wuming, Dissipative ion-acoustic solitons in ion-beam plasma obeying a κ-distribution. AIP Adv. 10, 045218 (2020)

    Article  ADS  Google Scholar 

  52. Md.R. Hassan, S. Sultana, Damped dust-ion-acoustic solitons in collisional magnetized nonthermal plasmas. Contr. Plast. Phys. 61, e202100065 (2021)

    Google Scholar 

  53. S.V. Singh, R.V. Reddy, G.S. Lakhina, Broadband electrostatic noise due to nonlinear electron-acoustic waves. Adv. Space Res. 28, 1643–1648 (2001)

    Article  ADS  Google Scholar 

  54. S.G. Tagare, S.V. Singh, R.V. Reddy, G.S. Lakhina, Electron-acoustic solitons in the Earth’s magnetotail. Nonlinear Process. Geophys. 11, 215–218 (2004)

    Article  ADS  Google Scholar 

  55. S.V. Singh, G.S. Lakhina, R. Bharuthram, S.R. Pillay, Electrostatic solitary structures in presence of non-thermal electrons and a warm electron beam on the auroral field lines. Phys. Plasmas 18, 122306 (2011)

    Article  ADS  Google Scholar 

  56. S.K. Maharaj, R. Bharuthram, S.V. Singh, G.S. Lakhina, Existence domains of slow and fast ion-acoustic solitons in two-ion space plasmas. Phys. Plasmas 22, 032313 (2015)

    Article  ADS  Google Scholar 

  57. L.N. Mbuli, S.K. Maharaj, R. Bharuthram, S.V. Singh, G.S. Lakhina, Arbitrary amplitude fast electron-acoustic solitons in three-electron component space plasmas. Phys. Plasmas 23, 062302 (2016)

    Article  ADS  Google Scholar 

  58. L.N. Mbuli, S.K. Maharaj, R. Bharuthram, S.V. Singh, G.S. Lakhina, Arbitrary amplitude slow electron-acoustic and ion-acoustic solitons in three-electron temperature space plasmas. Phys. Plasmas 22, 062307 (2015)

    Article  ADS  Google Scholar 

  59. G.S. Lakhina, S.V. Singh, R. Rubia, T. Sreeraj, A Review of nonlinear fluid models for ion-and electron-acoustic solitons and double layers: Application to weak double layers and electrostatic solitary waves in the solar wind and the lunar wake. Phys. Plasmas 25, 080501 (2018)

    Article  ADS  Google Scholar 

  60. G.S. Lakhina, S.V. Singh, Generation of weak double layers and low-frequency electrostatic waves in the solar wind. Solar Phys 290, 3033–3049 (2015)

    Article  ADS  Google Scholar 

  61. G.S. Lakhina, S. Singh, R. Rubia, S. Devanandhan, Electrostatic solitary structures in space plasmas: soliton perspective. Plasma 4, 681–731 (2021)

    Article  Google Scholar 

  62. G.S. Lakhina, S.V. Singh, A.P. Kakad, Ion acoustic solitons/double layers in two-ion plasma revisited. Phys. Plasmas 21, 062311 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. Hosseini or D. Baleanu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhukalya, B., Das, R., Hosseini, K. et al. Small amplitude ion-acoustic solitary waves in a magnetized ion-beam plasma under the effect of ion and beam temperatures. Eur. Phys. J. Plus 138, 315 (2023). https://doi.org/10.1140/epjp/s13360-023-03897-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03897-3

Navigation