Skip to main content

Advertisement

Log in

Advanced optical tweezers on cell manipulation and analysis

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Optical tweezers (OTs), which generate a variety of fascinating beam patterns, allow biologists to uncover the natural secrets of human life at single-cell level. Due to its gentle treatment and high resolution, the technology opens up a new chapter for cytology studies ranging from cells infected with pathogenic bacteria to stimulating cell mechanotransduction. In the process, optical tweezers play an irreplaceable role in the field of cytology, including chromatin analysis, blood diagnosis, cytoskeletal adjustment, intercellular adhesion, single-molecule assessment, and in vitro reconstruction. In this review, we provide a comprehensive and in-depth insight into cellular studies in OTs, covering current research from fundamental theory and optical stiffness calculation to the bio-analytical applications of different types of cells. The aim of this review is to convey the latest achievements over the last decade, such as OTs manipulating cells, biological analysis on their elasticity, adhesion, and migration, and even combination with other promising technologies, i.e., Raman spectroscopy and microfluidics. We believe this review will facilitate the rapid development of OTs in cell science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Data Availability Statements

All data included in this study are available upon request by contact with the corresponding author.

References

  1. A. Ashkin, Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24(4), 156–159 (1970)

    Article  ADS  Google Scholar 

  2. A. Ashkin, J.M. Dziedzic, Optical levitation by radiation pressure. Appl. Phys. Lett. 19(8), 283–285 (1971)

    Article  ADS  Google Scholar 

  3. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11(5), 288–290 (1986)

    Article  ADS  Google Scholar 

  4. J.R. Moffitt, Y.R. Chemla, S.B. Smith, C. Bustamante, Recent advances in optical Tweezers. Annu. Rev. Biochem. 77(1), 205–228 (2008)

    Article  Google Scholar 

  5. D.G. Grier, Optical tweezers in colloid and interface science. Curr. Opin. Colloid Interface Sci. 2(3), 264–270 (1997)

    Article  Google Scholar 

  6. Y. Yang, Y. Ren, M. Chen, Y. Arita, C. Rosales-Guzmán, Optical trapping with structured light: a review. Adv. Photonics 3(3), 034001 (2021)

    Article  ADS  Google Scholar 

  7. A. Ashkin, J. Dziedzic, Optical trapping and manipulation of viruses and bacteria. Science 235(4795), 1517–1520 (1987)

    Article  ADS  Google Scholar 

  8. F.M. Fazal, S.M. Block, Optical tweezers study life under tension. Nat. Photonics 5(6), 318–321 (2011)

    Article  ADS  Google Scholar 

  9. C.N. LaFratta, Optical tweezers for medical diagnostics. Anal. Bioanal. Chem. 405(17), 5671–5677 (2013)

    Article  Google Scholar 

  10. S. Chu, L. Hollberg, J.E. Bjorkholm, A. Cable, A. Ashkin, Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55(1), 48–51 (1985)

    Article  ADS  Google Scholar 

  11. S. Chu, J.E. Bjorkholm, A. Ashkin, A. Cable, Experimental observation of optically trapped atoms. Phys. Rev. Lett. 57(3), 314–317 (1986)

    Article  ADS  Google Scholar 

  12. H. Xin, Y. Li, Y.-C. Liu, Y. Zhang, Y.-F. Xiao, B. Li, Optical forces: from fundamental to biological applications. Adv. Mater. 32(37), 2001994 (2020)

    Article  Google Scholar 

  13. M.C. Asplund, J.A. Johnson, J.E. Patterson, The 2018 Nobel Prize in Physics: optical tweezers and chirped pulse amplification. Anal. Bioanal. Chem. 411(20), 5001–5005 (2019)

    Article  Google Scholar 

  14. K. Dholakia, T. Čižmár, Shaping the future of manipulation. Nat. Photonics 5(6), 335–342 (2011)

    Article  ADS  Google Scholar 

  15. D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. Lim, C.-W. Qiu, Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl. 6(9), e17039–e17039 (2017)

    Article  ADS  Google Scholar 

  16. M.M. Wang, E. Tu, D.E. Raymond, J.M. Yang, H. Zhang, N. Hagen, B. Dees, E.M. Mercer, A.H. Forster, I. Kariv, P.J. Marchand, W.F. Butler, Microfluidic sorting of mammalian cells by optical force switching. Nat. Biotechnol. 23(1), 83–87 (2005)

    Article  Google Scholar 

  17. R. Pätzold, M. Keuntje, K. Theophile, J. Müller, E. Mielcarek, A. Ngezahayo, A. Anders-von Ahlften, In situ mapping of nitrifiers and anammox bacteria in microbial aggregates by means of confocal resonance Raman microscopy. J. Microbiol. Methods 72(3), 241–248 (2008)

    Article  Google Scholar 

  18. K. Visscher, S.P. Gross, S.M. Block, Construction of multiple-beam optical traps with nanometer-resolution position sensing. IEEE J. Sel. Top. Quantum Electron. 2(4), 1066–1076 (1996)

    Article  ADS  Google Scholar 

  19. J.P. Hoogenboom, D.L.J. Vossen, C. Faivre-Moskalenko, M. Dogterom, A.V. Blaaderen, Patterning surfaces with colloidal particles using optical tweezers. Appl. Phys. Lett. 80(25), 4828–4830 (2002)

    Article  ADS  Google Scholar 

  20. E.R. Dufresne, D.G. Grier, Optical tweezer arrays and optical substrates created with diffractive optics. Rev. Sci. Instrum. 69(5), 1974–1977 (1998)

    Article  ADS  Google Scholar 

  21. F. Hörner, M. Woerdemann, S. Müller, B. Maier, C. Denz, Full 3D translational and rotational optical control of multiple rod-shaped bacteria. J. Biophotonics 3(7), 468–475 (2010)

    Article  Google Scholar 

  22. E.R. Dufresne, G.C. Spalding, M.T. Dearing, S.A. Sheets, D.G. Grier, Computer-generated holographic optical tweezer arrays. Rev. Sci. Instrum. 72(3), 1810–1816 (2001)

    Article  ADS  Google Scholar 

  23. K. Ramser, D. Hanstorp, Optical manipulation for single-cell studies. J. Biophotonics 3(4), 187–206 (2010)

    Article  Google Scholar 

  24. P.-K. Andrew, M.A.K. Williams, E. Avci, Optical micromachines for biological studies. Micromachines 11(2), 192 (2020)

    Article  Google Scholar 

  25. G. Carmon, M. Feingold, Rotation of single bacterial cells relative to the optical axis using optical tweezers. Opt. Lett. 36(1), 40–42 (2011)

    Article  ADS  Google Scholar 

  26. D.P.E. Smith, J.K.H. Hörber, G. Binnig, H. Nejoh, Structure, registry and imaging mechanism of alkylcyanobiphenyl molecules by tunnelling microscopy. Nature 344(6267), 641–644 (1990)

    Article  ADS  Google Scholar 

  27. K.C. Neuman, A. Nagy, Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5(6), 491–505 (2008)

    Article  Google Scholar 

  28. J. Lee, S.-Y. Teh, A. Lee, H.H. Kim, C. Lee, K.K. Shung, Single beam acoustic trapping. Appl. Phys. Lett. 95(7), 073701 (2009)

    Article  ADS  Google Scholar 

  29. T. Tanaka, F. Mizutani, T. Yasukawa, Dielectrophoretic tweezers for pickup and relocation of individual cells using microdisk electrodes with a microcavity. Electrochemistry 84(5), 361–363 (2016)

    Article  Google Scholar 

  30. O.M. Maragò, P.H. Jones, P.G. Gucciardi, G. Volpe, A.C. Ferrari, Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 8(11), 807–819 (2013)

    Article  ADS  Google Scholar 

  31. M.D. Wang, H. Yin, R. Landick, J. Gelles, S.M. Block, Stretching DNA with optical tweezers. Biophys. J . 72(3), 1335–1346 (1997)

    Article  Google Scholar 

  32. I.A. Favre-Bulle, A.B. Stilgoe, E.K. Scott, H. Rubinsztein-Dunlop, Optical trapping in vivo: theory, practice, and applications. Nanophotonics 8(6), 1023–1040 (2019)

    Article  Google Scholar 

  33. A.A. de Thomaz, A. Fontes, C.V. Stahl, L.Y. Pozzo, D.C. Ayres, D.B. Almeida, P.M.A. Farias, B.S. Santos, J. Santos-Mallet, S.A.O. Gomes, S. Giorgio, D. Feder, C.L. Cesar, Optical tweezers for studying taxis in parasites. J. Opt. 13(4), 044015 (2011)

    Article  ADS  Google Scholar 

  34. A.G. Hendricks, E.L.F. Holzbaur, Y.E. Goldman, Force measurements on cargoes in living cells reveal collective dynamics of microtubule motors. Proc. Natl. Acad. Sci. 109(45), 18447–18452 (2012)

    Article  ADS  Google Scholar 

  35. K. Tsujita, R. Satow, S. Asada, Y. Nakamura, L. Arnes, K. Sako, Y. Fujita, K. Fukami, T. Itoh, Homeostatic membrane tension constrains cancer cell dissemination by counteracting BAR protein assembly. Nat. Commun. 12(1), 5930 (2021)

    Article  ADS  Google Scholar 

  36. D.G. Grier, A revolution in optical manipulation. Nature 424(6950), 810–816 (2003)

    Article  ADS  Google Scholar 

  37. G. Pesce, P.H. Jones, O.M. Maragò, G. Volpe, Optical tweezers: theory and practice. Eur Phys J Plus 135(12), 949 (2020)

    Article  Google Scholar 

  38. J.D. Kolbow, N.C. Lindquist, C.T. Ertsgaard, D. Yoo, S.-H. Oh, Nano-optical tweezers: methods and applications for trapping single molecules and nanoparticles. ChemPhysChem 22(14), 1409–1420 (2021)

    Article  Google Scholar 

  39. S.C. Kuo, Using optics to measure biological forces and mechanics. Traffic 2(11), 757–763 (2001)

    Article  Google Scholar 

  40. K. Norregaard, L. Jauffred, K. Berg-Sørensen, L.B. Oddershede, Optical manipulation of single molecules in the living cell. Phys. Chem. Chem. Phys. 16(25), 12614–12624 (2014)

    Article  Google Scholar 

  41. K.R. Dhakal, V. Lakshminarayanan, Chapter one—optical tweezers: fundamentals and some biophysical applications, in Progress in opticsm, vol. 63, ed. by T.D. Visser (Elsevier, Amsterdam, 2018), pp.1–31

    Google Scholar 

  42. R.P. Badman, F. Ye, M.D. Wang, Towards biological applications of nanophotonic tweezers. Curr. Opin. Chem. Biol. 53, 158–166 (2019)

    Article  Google Scholar 

  43. I.C.D. Lenton, D.J. Armstrong, A.B. Stilgoe, T.A. Nieminen, H. Rubinsztein-Dunlop, Orientation of swimming cells with annular beam optical tweezers. Opt. Commun. 459, 124864 (2020)

    Article  Google Scholar 

  44. T.A. Nieminen, V.L.Y. Loke, A.B. Stilgoe, N.R. Heckenberg, H. Rubinsztein-Dunlop, T-matrix method for modelling optical tweezers. J. Mod. Opt. 58(5–6), 528–544 (2011)

    Article  ADS  MATH  Google Scholar 

  45. A.A.M. Bui, A.B. Stilgoe, I.C.D. Lenton, L.J. Gibson, A.V. Kashchuk, S. Zhang, H. Rubinsztein-Dunlop, T.A. Nieminen, Theory and practice of simulation of optical tweezers. J. Quant. Spectrosc. Radiat. Transfer 195, 66–75 (2017)

    Article  ADS  Google Scholar 

  46. F. Czerwinski, A.C. Richardson, L.B. Oddershede, Quantifying noise in optical tweezers by Allan variance. Opt. Express 17(15), 13255–13269 (2009)

    Article  ADS  Google Scholar 

  47. A.B. Stilgoe, N.R. Heckenberg, T.A. Nieminen, H. Rubinsztein-Dunlop, Phase-transition-like properties of double-beam optical tweezers. Phys. Rev. Lett. 107(24), 248101 (2011)

    Article  ADS  MATH  Google Scholar 

  48. M. Haghshenas-Jaryani, B. Black, S. Ghaffari, J. Drake, A. Bowling, S. Mohanty, Dynamics of microscopic objects in optical tweezers: experimental determination of underdamped regime and numerical simulation using multiscale analysis. Nonlinear Dyn. 76(2), 1013–1030 (2014)

    Article  MathSciNet  Google Scholar 

  49. J.C. Loudet, B.M. Mihiretie, B. Pouligny, Optically driven oscillations of ellipsoidal particles. Part II: ray-optics calculations. Eur. Phys. J. E 37(12), 125 (2014)

    Article  Google Scholar 

  50. Z. Liu, D. Zhao, Optical trapping Rayleigh dielectric spheres with focused anomalous hollow beams. Appl. Opt. 52(6), 1310–1316 (2013)

    Article  ADS  Google Scholar 

  51. A. Ashkin, Force of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. Biophys. J. 61, 569–582 (1992)

    Article  ADS  Google Scholar 

  52. M.I. Mishchenko, Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation. Appl. Opt. 39(6), 1026–1031 (2000)

    Article  ADS  Google Scholar 

  53. A. Callegari, M. Mijalkov, A.B. Gököz, G. Volpe, Computational toolbox for optical tweezers in geometrical optics. J. Opt. Soc. Am. B 32(5), B11–B19 (2015)

    Article  Google Scholar 

  54. Y. Wang, J. Sang, R. Ao, Y. Ma, B. Fu, Numerical simulation of deformed red blood cell by utilizing neural network approach and finite element analysis. Comput. Methods Biomech. Biomed. Engin. 23(15), 1190–1200 (2020)

    Article  Google Scholar 

  55. R. Li, Y. Zhao, R. Li, H. Liu, Y. Ge, Z. Xu, Plasmonic optical trapping of nanoparticles using T-shaped copper nanoantennas. Opt. Express 29(7), 9826–9835 (2021)

    Article  ADS  Google Scholar 

  56. R.C. Gauthier, Computation of the optical trapping force using an FDTD based technique. Opt. Express 13(10), 3707–3718 (2005)

    Article  ADS  Google Scholar 

  57. A.G. Nalimov, V.V. Kotlyar, Rotation of an ellipsoidal dielectric particle in the focus of a circularly polarized gaussian beam. Optik 222, 165479 (2020)

    Article  ADS  Google Scholar 

  58. S.N. Khonina, S.V. Krasnov, A.V. Ustinov, S.A. Degtyarev, A.P. Porfirev, A. Kuchmizhak, S.I. Kudryashov, Refractive twisted microaxicons. Opt. Lett. 45(6), 1334–1337 (2020)

    Article  ADS  Google Scholar 

  59. M.A. Yurkin, A.G. Hoekstra, The discrete dipole approximation: an overview and recent developments. J. Quant. Spectrosc. Radiat. Transfer 106(1), 558–589 (2007)

    Article  ADS  Google Scholar 

  60. T.A. Nieminen, H. Rubinsztein-Dunlop, N.R. Heckenberg, Calculation of the T-matrix: general considerations and application of the point-matching method. J. Quant. Spectrosc. Radiat. Transfer 79–80, 1019–1029 (2003)

    Article  ADS  Google Scholar 

  61. P.C. Waterman, Symmetry, unitarity, and geometry in electromagnetic scattering. Phys. Rev. D 3(4), 825–839 (1971)

    Article  ADS  Google Scholar 

  62. P. Polimeno, M.A. Iatì, C. Degli Esposti Boschi, S.H. Simpson, V. Svak, O. Brzobohatý, P. Zemánek, O.M. Maragò, R. Saija, T-matrix calculations of spin-dependent optical forces in optically trapped nanowires. Eur. Phys. J. Plus 136(1), 86 (2021)

    Article  Google Scholar 

  63. P. Polimeno, A. Magazzù, M.A. Iatì, R. Saija, L. Folco, D. Bronte Ciriza, M.G. Donato, A. Foti, P.G. Gucciardi, A. Saidi, C. Cecchi-Pestellini, A. Jimenez Escobar, E. Ammannito, G. Sindoni, I. Bertini, V. Della Corte, L. Inno, A. Ciaravella, A. Rotundi, O.M. Maragò, Optical tweezers in a dusty universe. Eur. Phys. J. Plus 136(3), 339 (2021)

    Article  Google Scholar 

  64. A.N. Timo, L.Y.L. Vincent, B.S. Alexander, K. Gregor, M.B. Agata, R.H. Norman, R.-D. Halina, Optical tweezers computational toolbox. J. Opt. A: Pure Appl. Opt. 9(8), S196 (2007)

    Article  Google Scholar 

  65. M.I. Mishchenko, N.T. Zakharova, G. Videen, N.G. Khlebtsov, T. Wriedt, Comprehensive T-matrix reference database: A 2007–2009 update. J. Quant. Spectrosc. Radiat. Transfer 111(4), 650–658 (2010)

    Article  ADS  Google Scholar 

  66. P.M. Hansen, I.M. Tolić-Nørrelykke, H. Flyvbjerg, K. Berg-Sørensen, tweezercalib 2.0: faster version of MatLab package for precise calibration of optical tweezers. Comput. Phys. Commun. 174(6), 518–520 (2006)

    Article  ADS  MATH  Google Scholar 

  67. M. Dienerowitz, G. Gibson, F. Dienerowitz, M. Padgett, Expanding the toolbox for nanoparticle trapping and spectroscopy with holographic optical tweezers. J. Opt. 14(4), 045003 (2012)

    Article  ADS  Google Scholar 

  68. M.A. Taylor, W.P. Bowen, A computational tool to characterize particle tracking measurements in optical tweezers. J. Opt. 15(8), 085701 (2013)

    Article  ADS  Google Scholar 

  69. I.C.D. Lenton, A.B. Stilgoe, T.A. Nieminen, H. Rubinsztein-Dunlop, OTSLM toolbox for Structured Light Methods. Comput. Phys. Commun. 253, 107199 (2020)

    Article  MathSciNet  Google Scholar 

  70. J. Herranen, J. Markkanen, G. Videen, K. Muinonen, Non-spherical particles in optical tweezers: a numerical solution. PLoS ONE 14(12), e0225773 (2019)

    Article  Google Scholar 

  71. Cao L, Li, J. L. In New formulation and solution of electromagnetic scattering by a radially multilayered gyrotropic sphere, IEEE iWEM2011, 8–10 Aug. 2011; (2011), pp 223–228

  72. T.A. Nieminen, N. du Preez-Wilkinson, A.B. Stilgoe, V.L.Y. Loke, A.A.M. Bui, H. Rubinsztein-Dunlop, Optical tweezers: Theory and modelling. J. Quant. Spectrosc. Radiat. Transfer 146, 59–80 (2014)

    Article  ADS  Google Scholar 

  73. T.T. Perkins, Optical traps for single molecule biophysics: a primer. Laser Photonics Rev. 3(1–2), 203–220 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  74. A. Zaltron, M. Merano, G. Mistura, C. Sada, F. Seno, Optical tweezers in single-molecule experiments. Eur. Phys. J. Plus 135(11), 896 (2020)

    Article  Google Scholar 

  75. G. Jiang, G. Giannone, D.R. Critchley, E. Fukumoto, M.P. Sheetz, Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424(6946), 334–337 (2003)

    Article  ADS  Google Scholar 

  76. G.M. King, I. Kosztin, Towards a quantitative understanding of protein-lipid bilayer interactions at the single molecule level: opportunities and challenges. J. Membr. Biol. 254(1), 17–28 (2021)

    Article  Google Scholar 

  77. N. Malagnino, G. Pesce, A. Sasso, E. Arimondo, Measurements of trapping efficiency and stiffness in optical tweezers. Opt. Commun. 214(1), 15–24 (2002)

    Article  ADS  Google Scholar 

  78. K.A. Svoboda, S.M. Block, Biological Applications of Optical Forces. Ann. Rev. Biophys. Biomol. Struct. 23(1), 247–285 (1994)

    Article  Google Scholar 

  79. D. Li, J.-H. Zhou, X.-Y. Hu, M.-C. Zhong, L. Gong, Z.-Q. Wang, H.-W. Wang, Y.-M. Li, In situ calibrating optical tweezers with sinusoidal-wave drag force method. Chin. Phys. B 24(11), 118703 (2015)

    Article  ADS  Google Scholar 

  80. A. Buosciolo, G. Pesce, A. Sasso, New calibration method for position detector for simultaneous measurements of force constants and local viscosity in optical tweezers. Opt. Commun. 230(4), 357–368 (2004)

    Article  ADS  Google Scholar 

  81. M. Capitanio, G. Romano, R. Ballerini, M. Giuntini, F.S. Pavone, D. Dunlap, L. Finzi, Calibration of optical tweezers with differential interference contrast signals. Rev. Sci. Instrum. 73(4), 1687–1696 (2002)

    Article  ADS  Google Scholar 

  82. D.B. Phillips, D.M. Carberry, S.H. Simpson, H. Schäfer, M. Steinhart, R. Bowman, G.M. Gibson, M.J. Padgett, S. Hanna, M.J. Miles, Optimizing the optical trapping stiffness of holographically trapped microrods using high-speed video tracking. J. Opt. 13(4), 044023 (2011)

    Article  ADS  Google Scholar 

  83. D. Ott, S. Nader, S. Reihani, L.B. Oddershede, Simultaneous three-dimensional tracking of individual signals from multi-trap optical tweezers using fast and accurate photodiode detection. Opt. Express 22(19), 23661–23672 (2014)

    Article  ADS  Google Scholar 

  84. S. Mohammad, W. Winson, A. Bahman, Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers. J. Biomed. Opt. 19(11), 1–13 (2014)

    Google Scholar 

  85. A. Le Gall, K. Perronet, D. Dulin, A. Villing, P. Bouyer, K. Visscher, N. Westbrook, Simultaneous calibration of optical tweezers spring constant and position detector response. Opt. Express 18(25), 26469–26474 (2010)

    Article  ADS  Google Scholar 

  86. P.H. Jones, O.M. Maragò, G. Volpe, Optical tweezers: principles and applications (Cambridge University Press, Cambridge, 2015)

    Book  Google Scholar 

  87. J.-H. Zhou, D. Li, X.-Y. Hu, M.-C. Zhong, Z.-Q. Wang, L. Gong, W.-W. Liu, Y.-M. Li, Calibrating oscillation response of a piezo-stage using optical tweezers. Opt. Express 23(19), 24108–24119 (2015)

    Article  ADS  Google Scholar 

  88. Y. Wu, D. Sun, W. Huang, Mechanical force characterization in manipulating live cells with optical tweezers. J. Biomech. 44(4), 741–746 (2011)

    Article  Google Scholar 

  89. T. Xu, Q. Zhang, S. Wu, Z. Jiang, X. Wu, Optically trapped particle dynamic responses under varying frequency sinusoidal stimulus. Opt. Lasers Eng. 134, 106143 (2020)

    Article  Google Scholar 

  90. A. Raudsepp, M.A.K. Williams, S.B. Hall, Multidimensional mapping of the restoring force of an optical trap using triangular wave flow. J. Mod. Opt. 63(21), 2308–2314 (2016)

    Article  ADS  Google Scholar 

  91. M.M. Shindel, J.W. Swan, E.M. Furst, Calibration of an optical tweezer microrheometer by sequential impulse response. Rheol. Acta 52(5), 455–465 (2013)

    Article  Google Scholar 

  92. H. Yücel, N.T. Okumuşoğlu, Optical tweezer calibration by using a part of the intensity distribution of a trapped particle. Appl. Opt. 55(28), 7861–7865 (2016)

    Article  ADS  Google Scholar 

  93. M.-C. Dy, S. Kanaya, T. Sugiura, Localized cell stiffness measurement using axial movement of an optically trapped microparticle. J. Biomed. Opt. 18(11), 111411 (2013)

    Article  Google Scholar 

  94. F. Bordeleau, J. Bessard, Y. Sheng, N. Marceau, Measuring integrated cellular mechanical stress response at focal adhesions by optical tweezers. J. Biomed. Opt. 16(9), 095005 (2011)

    Article  ADS  Google Scholar 

  95. M. Grimm, T. Franosch, S. Jeney, High-resolution detection of Brownian motion for quantitative optical tweezers experiments. Phys. Rev. E 86(2), 021912 (2012)

    Article  ADS  Google Scholar 

  96. C. Riesenberg, C.A. Iriarte-Valdez, A. Becker, M. Dienerowitz, A. Heisterkamp, A. Ngezahayo, M.L. Torres-Mapa, Probing ligand-receptor interaction in living cells using force measurements with optical tweezers. Front Bioeng Biotechnol 8(1239), 1239 (2020)

    Google Scholar 

  97. B. Melo, F. Almeida, G. Temporão, T. Guerreiro, Relaxing constraints on data acquisition and position detection for trap stiffness calibration in optical tweezers. Opt. Express 28(11), 16256–16269 (2020)

    Article  ADS  Google Scholar 

  98. S. Drobczynski, K. Dus-Szachniewicz, K. Symonowicz, D. Glogocka, Spectral analysis by a video camera in a holographic optical tweezers setup. Opt. Appl. 43(4), 739–746 (2013)

    Google Scholar 

  99. Z.-Q. Wang, J.-H. Zhou, M.-C. Zhong, D. Li, Y.-M. Li, Calibration of optical tweezers based on an autoregressive model. Opt. Express 22(14), 16956–16964 (2014)

    Article  ADS  Google Scholar 

  100. P.S. Alves, M.S. Rocha, Videomicroscopy calibration of optical tweezers by position autocorrelation function analysis. Appl. Phys. B 107(2), 375–378 (2012)

    Article  ADS  Google Scholar 

  101. Y. Roichman, I. Cholis, D.G. Grier, Volumetric imaging of holographic optical traps. Opt. Express 14(22), 10907–10912 (2006)

    Article  ADS  Google Scholar 

  102. J. Ng, Z. Lin, C.T. Chan, Theory of optical trapping by an optical vortex beam. Phys. Rev. Lett. 104(10), 103601 (2010)

    Article  ADS  Google Scholar 

  103. D.B. Ruffner, D.G. Grier, Optical conveyors: a class of active tractor beams. Phys. Rev. Lett. 109(16), 163903 (2012)

    Article  ADS  Google Scholar 

  104. R. Yu-Xuan, W. Jian-Guang, C. Man, L. Huang, L. Yin-Mei, Stability of novel time-sharing dual optical tweezers using a rotating tilt glass plate. Chin. Phys. Lett. 27(2), 028703 (2010)

    Article  ADS  Google Scholar 

  105. J.E. Curtis, B.A. Koss, D.G. Grier, Dynamic holographic optical tweezers. Opt. Commun. 207(1), 169–175 (2002)

    Article  ADS  Google Scholar 

  106. D.L.J. Vossen, A.V.D. Horst, M. Dogterom, A.V. Blaaderen, Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions. Rev. Sci. Instrum. 75(9), 2960–2970 (2004)

    Article  ADS  Google Scholar 

  107. Y. Liang, Y. Cai, Z. Wang, M. Lei, Z. Cao, Y. Wang, M. Li, S. Yan, P.R. Bianco, B. Yao, Aberration correction in holographic optical tweezers using a high-order optical vortex. Appl. Opt. 57(13), 3618–3623 (2018)

    Article  ADS  Google Scholar 

  108. C.O. Mejean, A.W. Schaefer, E.A. Millman, P. Forscher, E.R. Dufresne, Multiplexed force measurements on live cells with holographic optical tweezers. Opt. Express 17(8), 6209–6217 (2009)

    Article  ADS  Google Scholar 

  109. C. Bin, L. Kelbauskas, S. Chan, R.M. Shetty, D. Smith, D.R. Meldrum, Rotation of single live mammalian cells using dynamic holographic optical tweezers. Opt. Lasers Eng. 92, 70–75 (2017)

    Article  Google Scholar 

  110. R. Dasgupta, S. Ahlawat, R.S. Verma, P.K. Gupta, Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode. Opt. Express 19(8), 7680–7688 (2011)

    Article  ADS  Google Scholar 

  111. A.S. Bezryadina, D.C. Preece, J.C. Chen, Z. Chen, Optical disassembly of cellular clusters by tunable ‘tug-of-war’ tweezers. Light Sci. Appl. 5(10), e16158–e16158 (2016)

    Article  Google Scholar 

  112. J. Lamstein, A. Bezryadina, D. Preece, J.C. Chen, Z. Chen, Optical tug-of-war tweezers: shaping light for dynamic control of bacterial cells (Invited Paper). Chin. Opt. Lett. 15(3), 030010 (2017)

    Article  ADS  Google Scholar 

  113. Q. Zhao, H.-W. Wang, P.-P. Yu, S.-H. Zhang, J.-H. Zhou, Y.-M. Li, L. Gong, Trapping and manipulation of single cells in crowded environments. Front. Bioeng. Biotechnol. 8, 422 (2020)

    Article  Google Scholar 

  114. V. Bobkova, J. Stegemann, R. Droop, E. Otte, C. Denz, Optical grinder: sorting of trapped particles by orbital angular momentum. Opt. Express 29(9), 12967–12975 (2021)

    Article  ADS  Google Scholar 

  115. E. Otte, C. Denz, Optical trapping gets structure: Structured light for advanced optical manipulation. Appl. Phys. Rev. 7(4), 041308 (2020)

    Article  ADS  Google Scholar 

  116. M.-C. Zhong, X.-B. Wei, J.-H. Zhou, Z.-Q. Wang, Y.-M. Li, Trapping red blood cells in living animals using optical tweezers. Nat. Commun. 4(1), 1768 (2013)

    Article  ADS  Google Scholar 

  117. F. Hörner, R. Meissner, S. Polali, J. Pfeiffer, T. Betz, C. Denz, E. Raz, Holographic optical tweezers-based in vivo manipulations in zebrafish embryos. J. Biophotonics 10(11), 1492–1501 (2017)

    Article  Google Scholar 

  118. Z. Tomori, P. Kesa, M. Nikorovic, J. Kanka, P. Jaakl, M. Sery, S. Bernatova, E. Valusova, M. Antalik, P. Zemanek, Holographic Raman tweezers controlled by multi-modal natural user interface. J. Opt. 18(1), 015602 (2016)

    Article  ADS  Google Scholar 

  119. S. Hu, D. Sun, Automatic transportation of biological cells with a robot-tweezer manipulation system. Int. J. Robot. Res. 30(14), 1681–1694 (2011)

    Article  Google Scholar 

  120. X. Li, C.C. Cheah, S. Hu, D. Sun, Dynamic trapping and manipulation of biological cells with optical tweezers. Automatica 49(6), 1614–1625 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  121. S. Hu, S. Chen, S. Chen, G. Xu, D. Sun, Automated transportation of multiple cell types using a robot-aided cell manipulation system with holographic optical tweezers. IEEE/ASME Trans. Mechatron. 22(2), 804–814 (2017)

    Article  Google Scholar 

  122. F. Arai, H. Maruyama, T. Sakami, A. Ichikawa, T. Fukuda, Pinpoint injection of microtools for minimally invasive micromanipulation of microbe by laser trap. IEEE/ASME Trans. Mechatron. 8(1), 3–9 (2003)

    Article  Google Scholar 

  123. S. Chowdhury, A. Thakur, P. Švec, C. Wang, W. Losert, S.K. Gupta, Automated manipulation of biological cells using gripper formations controlled by optical tweezers. IEEE Trans. Autom. Sci. Eng. 11(2), 338–347 (2014)

    Article  Google Scholar 

  124. S. Hu, R. Hu, X. Dong, T. Wei, S. Chen, D. Sun, Translational and rotational manipulation of filamentous cells using optically driven microrobots. Opt. Express 27(12), 16475–16482 (2019)

    Article  ADS  Google Scholar 

  125. S. Hu, H. Xie, T. Wei, S. Chen, D. Sun, Automated indirect transportation of biological cells with optical tweezers and a 3D printed microtool. Appl. Sci. 9(14), 2883 (2019)

    Article  Google Scholar 

  126. E. Gerena, F. Legendre, A. Molawade, Y. Vitry, S. Régnier, S. Haliyo, Tele-robotic platform for dexterous optical single-cell manipulation. Micromachines 10(10), 677 (2019)

    Article  Google Scholar 

  127. G. Vizsnyiczai, A. Buzas, B.L. Aekbote, T. Fekete, I. Grexa, P. Ormos, L. Kelemen, Multiview microscopy of single cells through microstructure-based indirect optical manipulation. Biomed. Opt. Express 11(2), 945–962 (2020)

    Article  Google Scholar 

  128. L. Li, T. Xie, STEM CELL NICHE: structure and Function. Annu. Rev. Cell Dev. Biol. 21(1), 605–631 (2005)

    Article  Google Scholar 

  129. Y.-W. Chen, S.X. Huang, A.L.R.T. de Carvalho, S.-H. Ho, M.N. Islam, S. Volpi, L.D. Notarangelo, M. Ciancanelli, J.-L. Casanova, J. Bhattacharya, A.F. Liang, L.M. Palermo, M. Porotto, A. Moscona, H.-W. Snoeck, A three-dimensional model of human lung development and disease from pluripotent stem cells. Nat. Cell Biol. 19(5), 542–549 (2017)

    Article  Google Scholar 

  130. G.R. Kirkham, E. Britchford, T. Upton, J. Ware, G.M. Gibson, Y. Devaud, M. Ehrbar, M. Padgett, S. Allen, L.D. Buttery, K. Shakesheff, Precision assembly of complex cellular microenvironments using holographic optical tweezers. Sci. Rep. 5(1), 8577 (2015)

    Article  ADS  Google Scholar 

  131. S. Hashimoto, A. Yoshida, T. Ohta, H. Taniguchi, K. Sadakane, K. Yoshikawa, Formation of stable cell–cell contact without a solid/gel scaffold: Non-invasive manipulation by laser under depletion interaction with a polymer. Chem. Phys. Lett. 655–656, 11–16 (2016)

    Article  ADS  Google Scholar 

  132. T. Yamazaki, T. Kishimoto, P. Leszczyński, K. Sadakane, T. Kenmotsu, H. Watanabe, T. Kazama, T. Matsumoto, K. Yoshikawa, H. Taniguchi, Construction of 3D cellular composites with stem cells derived from adipose tissue and endothelial cells by use of optical tweezers in a natural polymer solution. Materials 12(11), 1759 (2019)

    Article  ADS  Google Scholar 

  133. H.M. Nussenzveig, Cell membrane biophysics with optical tweezers. Eur. Biophys. J. 47(5), 499–514 (2018)

    Article  Google Scholar 

  134. J. Sigüenza, S. Mendez, F. Nicoud, How should the optical tweezers experiment be used to characterize the red blood cell membrane mechanics? Biomech. Model. Mechanobiol. 16(5), 1645–1657 (2017)

    Article  Google Scholar 

  135. M. Dao, C.T. Lim, S. Suresh, Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51(11), 2259–2280 (2003)

    Article  ADS  Google Scholar 

  136. C. Arbore, L. Perego, M. Sergides, M. Capitanio, Probing force in living cells with optical tweezers: from single-molecule mechanics to cell mechanotransduction. Biophys. Rev. 11(5), 765–782 (2019)

    Article  Google Scholar 

  137. M.S. Yousafzai, F. Ndoye, G. Coceano, J. Niemela, S. Bonin, G. Scoles, D. Cojoc, Substrate-dependent cell elasticity measured by optical tweezers indentation. Opt. Lasers Eng. 76, 27–33 (2016)

    Article  Google Scholar 

  138. F. Falleroni, V. Torre, D. Cojoc, Cell mechanotransduction with piconewton forces applied by optical tweezers. Front. Cellular Neurosci. 12, 130 (2018)

    Article  Google Scholar 

  139. Z.L. Zhou, T.H. Hui, B. Tang, A.H.W. Ngan, Accurate measurement of stiffness of leukemia cells and leukocytes using an optical trap by a rate-jump method. RSC Adv. 4(17), 8453–8460 (2014)

    Article  ADS  Google Scholar 

  140. K. Wang, Y. Xue, Y. Peng, X. Pang, Y. Zhang, L.I. Ruiz-Ortega, Y. Tian, A.H.W. Ngan, B. Tang, Elastic modulus and migration capability of drug treated leukemia cells K562. Biochem. Biophys. Res. Commun. 516(1), 177–182 (2019)

    Article  Google Scholar 

  141. M. Yousafzai, G. Coceano, A. Mariutti, F. Ndoye, L. Amin, J. Niemela, S. Bonin, G. Scoles, D. Cojoc, Effect of neighboring cells on cell stiffness measured by optical tweezers indentation. J. Biomed. Opt. 21(5), 057004 (2016)

    Article  ADS  Google Scholar 

  142. M.S. Yousafzai, G. Coceano, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers. J. Biomech. 60, 266–269 (2017)

    Article  Google Scholar 

  143. Y. Li, C. Wen, H. Xie, A. Ye, Y. Yin, Mechanical property analysis of stored red blood cell using optical tweezers. Colloids Surf. B 70(2), 169–173 (2009)

    Article  Google Scholar 

  144. H. Song, Y. Liu, B. Zhang, K. Tian, P. Zhu, H. Lu, Q. Tang, Study of in vitro RBCs membrane elasticity with AOD scanning optical tweezers. Biomed. Opt. Express 8(1), 384–394 (2017)

    Article  Google Scholar 

  145. C. Li, Y.P. Liu, K.K. Liu, A.C.K. Lai, Correlations Between the Experimental and Numerical Investigations on the Mechanical Properties of Erythrocyte by Laser Stretching. IEEE Trans. Nanobiosci. 7(1), 80–90 (2008)

    Article  Google Scholar 

  146. H. Basu, A.K. Dharmadhikari, J.A. Dharmadhikari, S. Sharma, D. Mathur, Tank treading of optically trapped red blood cells in shear flow. Biophys. J. 101(7), 1604–1612 (2011)

    Article  ADS  Google Scholar 

  147. J. Guck, R. Ananthakrishnan, T.J. Moon, C.C. Cunningham, J. Käs, Optical deformability of soft biological dielectrics. Phys. Rev. Lett. 84(23), 5451–5454 (2000)

    Article  ADS  Google Scholar 

  148. S. Rancourt-Grenier, M.-T. Wei, J.-J. Bai, A. Chiou, P.P. Bareil, P.-L. Duval, Y. Sheng, Dynamic deformation of red blood cell in Dual-trap Optical Tweezers. Opt. Express 18(10), 10462–10472 (2010)

    Article  ADS  Google Scholar 

  149. M. Wojdyla, S. Raj, D. Petrov, Nonequilibrium fluctuations of mechanically stretched single red blood cells detected by optical tweezers. Eur. Biophys. J. Biophys. Lett. 42(7), 539–547 (2013)

    Article  Google Scholar 

  150. K. Bambardekar, A. Dharmadhikari, J. Dharmadhikari, D. Mathur, S. Sharma, Measuring erythrocyte deformability with fluorescence, fluid forces, and optical trapping. J. Biomed. Opt. 13(6), 064021 (2008)

    Article  ADS  Google Scholar 

  151. M. Gu, S. Kuriakose, X. Gan, A single beam near-field laser trap for optical stretching, folding and rotation of erythrocytes. Opt. Express 15(3), 1369–1375 (2007)

    Article  ADS  Google Scholar 

  152. F. Merola, Á. Barroso, L. Miccio, P. Memmolo, M. Mugnano, P. Ferraro, C. Denz, Biolens behavior of RBCs under optically-induced mechanical stress. Cytometry A 91(5), 527–533 (2017)

    Article  Google Scholar 

  153. J. Czerwinska, S.M. Wolf, H. Mohammadi, S. Jeney, Red blood cell aging during storage, studied using optical tweezers experiment. Cell. Mol. Bioeng. 8(2), 258–266 (2015)

    Article  Google Scholar 

  154. R. Agrawal, T. Smart, J. Nobre-Cardoso, C. Richards, R. Bhatnagar, A. Tufail, D. Shima, H.P. Jones, C. Pavesio, Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Sci. Rep. 6(1), 15873 (2016)

    Article  ADS  Google Scholar 

  155. J. Liu, F. Zhang, L. Zhu, D. Chu, X. Qu, Mechanical properties of RBCs under oxidative stress measured by optical tweezers. Opt. Commun. 442, 56–59 (2019)

    Article  ADS  Google Scholar 

  156. C. Bernecker, M.A.R.B.F. Lima, C.D. Ciubotaru, P. Schlenke, I. Dorn, D. Cojoc, Biomechanics of ex vivo-generated red blood cells investigated by optical tweezers and digital holographic microscopy. Cells 10(3), 552 (2021)

    Article  Google Scholar 

  157. M. Depond, B. Henry, P. Buffet, P.A. Ndour, Methods to investigate the deformability of RBC during malaria. Front. Physiol. 10, 1613 (2020)

    Article  Google Scholar 

  158. R. Zhu, T. Avsievich, A. Popov, I. Meglinski, Optical tweezers in studies of red blood cells. Cells 9(3), 545 (2020)

    Article  Google Scholar 

  159. Y. Xie, X. Liu, Multifunctional manipulation of red blood cells using optical tweezers. J. Biophotonics 15(2), e202100315 (2021)

    Google Scholar 

  160. S. Nawaz, P. Sánchez, K. Bodensiek, S. Li, M. Simons, I.A.T. Schaap, Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations. PLoS ONE 7(9), e45297 (2012)

    Article  ADS  Google Scholar 

  161. G. Coceano, M.S. Yousafzai, W. Ma, F. Ndoye, L. Venturelli, I. Hussain, S. Bonin, J. Niemela, G. Scoles, D. Cojoc, E. Ferrari, Investigation into local cell mechanics by atomic force microscopy mapping and optical tweezer vertical indentation. Nanotechnology 27(6), 065102 (2015)

    Article  ADS  Google Scholar 

  162. ŠZ. Jokhadar, J. Iturri, J.L. Toca-Herrera, J. Derganc, Cell stiffness under small and large deformations measured by optical tweezers and atomic force microscopy: effects of actin disruptors CK-869 and jasplakinolide. J. Phys. D Appl. Phys. 54(12), 124001 (2021)

    Article  ADS  Google Scholar 

  163. S. Park, J. Kim, S.H. Yoon, A review on quantitative measurement of cell adhesion strength. J. Nanosci. Nanotechnol. 16(5), 4256–4273 (2016)

    Article  Google Scholar 

  164. I. Derényi, F. Jülicher, J. Prost, Formation and interaction of membrane tubes. Phys. Rev. Lett. 88(23), 238101 (2002)

    Article  ADS  Google Scholar 

  165. A.A. Khalili, M.R. Ahmad, A review of cell adhesion studies for biomedical and biological applications. Int. J. Mol. Sci. 16(8), 18149–18184 (2015)

    Article  Google Scholar 

  166. P. Honarmandi, H. Lee, M.J. Lang, R.D. Kamm, A microfluidic system with optical laser tweezers to study mechanotransduction and focal adhesion recruitment. Lab Chip 11(4), 684–694 (2011)

    Article  Google Scholar 

  167. C. Grashoff, B.D. Hoffman, M.D. Brenner, R. Zhou, M. Parsons, M.T. Yang, M.A. McLean, S.G. Sligar, C.S. Chen, T. Ha, M.A. Schwartz, Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466(7303), 263–266 (2010)

    Article  ADS  Google Scholar 

  168. D.F. Williams, On the mechanisms of biocompatibility. Biomaterials 29(20), 2941–2953 (2008)

    Article  Google Scholar 

  169. M. Borghesan, A. O’Loghlen, Integrins in senescence and aging. Cell Cycle 16(10), 909–910 (2017)

    Article  Google Scholar 

  170. R. Ungai-Salánki, B. Peter, T. Gerecsei, N. Orgovan, R. Horvath, B. Szabó, A practical review on the measurement tools for cellular adhesion force. Adv. Coll. Interface. Sci. 269, 309–333 (2019)

    Article  Google Scholar 

  171. A.J. Crick, M. Theron, T. Tiffert, V.L. Lew, P. Cicuta, J.C. Rayner, Quantitation of malaria parasite-erythrocyte cell–cell interactions using optical tweezers. Biophys. J. 107(4), 846–853 (2014)

    Article  ADS  Google Scholar 

  172. V. Rouger, G. Bordet, C. Couillault, S. Monneret, S. Mailfert, J.J. Ewbank, N. Pujol, D. Marguet, Independent synchronized control and visualization of interactions between living cells and organisms. Biophys. J. 106(10), 2096–2104 (2014)

    Article  ADS  Google Scholar 

  173. T. Avsievich, A. Popov, A. Bykov, I. Meglinski, Mutual interaction of red blood cells assessed by optical tweezers and scanning electron microscopy imaging. Opt. Lett. 43(16), 3921–3924 (2018)

    Article  ADS  Google Scholar 

  174. R. Zhu, T. Avsievich, A. Bykov, A. Popov, I. Meglinski, Influence of pulsed He–Ne laser irradiation on the red blood cell interaction studied by optical tweezers. Micromachines 10(12), 853 (2019)

    Article  Google Scholar 

  175. P. Ermolinskiy, A. Lugovtsov, F. Yaya, K. Lee, L. Kaestner, C. Wagner, A. Priezzhev, Effect of red blood cell aging in vivo on their aggregation properties in vitro: measurements with laser tweezers. Appl. Sci. 10(21), 7581 (2020)

    Article  Google Scholar 

  176. G.P. McNerney, W. Hübner, B.K. Chen, T. Huser, Manipulating CD4+ T cells by optical tweezers for the initiation of cell-cell transfer of HIV-1. J. Biophotonics 3(4), 216–223 (2010)

    Article  Google Scholar 

  177. K. Duś-Szachniewicz, S. Drobczyński, P. Ziółkowski, P. Kołodziej, K.M. Walaszek, A.K. Korzeniewska, A. Agrawal, P. Kupczyk, M. Woźniak, Hypoxia (Physioxia) impairs the early adhesion of single lymphoma cell to marrow stromal cell and extracellular matrix. Optical tweezers study. Int. J. Mol. Sci. 19(7), 1880 (2018)

    Article  Google Scholar 

  178. M. Zhong, G. Xue, J. Zhou, Z. Wang, Y. Li, Measurement of interaction force between RGD-peptide and Hela cell surface by optical tweezers. Chin. Opt. Lett. 10(10), 101701–101701 (2012)

    Article  ADS  Google Scholar 

  179. R. Podlipec, J. Štrancar, Cell-scaffold adhesion dynamics measured in first seconds predicts cell growth on days scale—optical tweezers study. ACS Appl. Mater. Interfaces. 7(12), 6782–6791 (2015)

    Article  Google Scholar 

  180. X. Gou, R. Wang, S.S.Y. Lam, J. Hou, A.Y.H. Leung, D. Sun, Cell adhesion manipulation through single cell assembly for characterization of initial cell-to-cell interaction. Biomed. Eng. Online 14(1), 114 (2015)

    Article  Google Scholar 

  181. K. Duś-Szachniewicz, S. Drobczyński, M. Woźniak, K. Zduniak, K. Ostasiewicz, P. Ziółkowski, A.K. Korzeniewska, A.K. Agrawal, P. Kołodziej, K. Walaszek, Z. Bystydzieński, G. Rymkiewicz, Differentiation of single lymphoma primary cells and normal B-cells based on their adhesion to mesenchymal stromal cells in optical tweezers. Sci. Rep. 9(1), 9885 (2019)

    Article  ADS  Google Scholar 

  182. D. Bray, Cell Movements: From Molecules To Motility (2001)

  183. R. Ananthakrishnan, A. Ehrlicher, The forces behind cell movement. Int. J. Biol. Sci. 3(5), 303–317 (2007)

    Article  Google Scholar 

  184. D. Tomkiewicz, N. Nouwen, A.J.M. Driessen, Pushing, pulling and trapping—modes of motor protein supported protein translocation. FEBS Lett. 581(15), 2820–2828 (2007)

    Article  Google Scholar 

  185. A. Mogilner, G. Oster, Force generation by actin polymerization II: the elastic ratchet and tethered filaments. Biophys. J . 84(3), 1591–1605 (2003)

    Article  Google Scholar 

  186. R.R. Kay, P. Langridge, D. Traynor, O. Hoeller, Changing directions in the study of chemotaxis. Nat. Rev. Mol. Cell Biol. 9(6), 455–463 (2008)

    Article  Google Scholar 

  187. H. Kress, J.-G. Park, C.O. Mejean, J.D. Forster, J. Park, S.S. Walse, Y. Zhang, D. Wu, O.D. Weiner, T.M. Fahmy, E.R. Dufresne, Cell stimulation with optically manipulated microsources. Nat. Methods 6(12), 905–909 (2009)

    Article  Google Scholar 

  188. M.J. Footer, J.W.J. Kerssemakers, J.A. Theriot, M. Dogterom, Direct measurement of force generation by actin filament polymerization using an optical trap. Proc. Natl. Acad. Sci. 104(7), 2181–2186 (2007)

    Article  ADS  Google Scholar 

  189. X. Gou, H. Yang, T.M. Fahmy, Y. Wang, D. Sun, Direct measurement of cell protrusion force utilizing a robot-aided cell manipulation system with optical tweezers for cell migration control. The International Journal of Robotics Research 33(14), 1782–1792 (2014)

    Article  Google Scholar 

  190. H. Yang, X. Gou, Y. Wang, T.M. Fahmy, A.Y.H. Leung, J. Lu, D. Sun, A dynamic model of chemoattractant-induced cell migration. Biophys. J. 108(7), 1645–1651 (2015)

    Article  ADS  Google Scholar 

  191. X. Gou, J.C.E.H. Yang, S. Dong, Combined single-cell manipulation and chemomechanical modeling to probe cell migration mechanism during cell-to-cell interaction. IEEE Trans. Biomed. Eng. 67(5), 1474–1482 (2020)

    Article  Google Scholar 

  192. C.A. Moreau, K.A. Quadt, H. Piirainen, H. Kumar, S.P. Bhargav, L. Strauss, N.H. Tolia, R.C. Wade, J.P. Spatz, I. Kursula, F. Frischknecht, A function of profilin in force generation during malaria parasite motility that is independent of actin binding. J. Cell Sci. 134(5), jcs233775 (2020)

    Article  Google Scholar 

  193. O. Adamczyk, Z. Baster, M. Szczypior, Z. Rajfur, Substrate stiffness mediates formation of novel cytoskeletal structures in fibroblasts during cell-microspheres interaction. Int. J. Mol. Sci. 22(2), 960 (2021)

    Article  Google Scholar 

  194. M. Hagiwara, H. Maruyama, M. Akiyama, I. Koh, F. Arai, Weakening of resistance force by cell–ECM interactions regulate cell migration directionality and pattern formation. Commun. Biol. 4(1), 808 (2021)

    Article  Google Scholar 

  195. K. Rottner, T.E.B. Stradal, B. Chen, WAVE regulatory complex. Curr. Biol. 31(10), R512–R517 (2021)

    Article  Google Scholar 

  196. A. Mehidi, F. Kage, Z. Karatas, M. Cercy, M. Schaks, A. Polesskaya, M. Sainlos, A.M. Gautreau, O. Rossier, K. Rottner, G. Giannone, Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration. Nat. Cell Biol. 23(11), 1148–1162 (2021)

    Article  Google Scholar 

  197. A. Orlando, F. Franceschini, C. Muscas, S. Pidkova, M. Bartoli, M. Rovere, A. Tagliaferro, A comprehensive review on raman spectroscopy applications. Chemosensors 9(9), 262 (2021)

    Article  Google Scholar 

  198. A. Rousaki, P. Vandenabeele, In situ Raman spectroscopy for cultural heritage studies. J. Raman Spectrosc. 52(12), 2178–2189 (2021)

    Article  ADS  Google Scholar 

  199. Donjuán-Loredo G., Espinosa-Tanguma R., Ramírez-Elías M. G. Raman spectroscopy in the diagnosis of metabolic syndrome. Appl. Spectrosc. Rev. 1–21 (2021)

  200. C. Wang, Y.-L. Pan, G. Videen, Optical trapping and laser-spectroscopy measurements of single particles in air: a review. Meas. Sci. Technol. 32(10), 102005 (2021)

    Article  ADS  Google Scholar 

  201. A.N. Koya, J. Cunha, T.-L. Guo, A. Toma, D. Garoli, T. Wang, S. Juodkazis, D. Cojoc, R. Proietti Zaccaria, Novel plasmonic nanocavities for optical trapping-assisted biosensing applications. Adv. Opt. Mater. 8(7), 1901481 (2020)

    Article  Google Scholar 

  202. A.C. Fernandes, K.V. Gernaey, U. Krühne, Connecting worlds—a view on microfluidics for a wider application. Biotechnol. Adv. 36(4), 1341–1366 (2018)

    Article  Google Scholar 

  203. Y. Sun, T.A. Haglund, A.J. Rogers, A.F. Ghanim, P. Sethu, Review: microfluidics technologies for blood-based cancer liquid biopsies. Anal. Chim. Acta 1012, 10–29 (2018)

    Article  Google Scholar 

  204. X. Zheng, X. Duan, X. Tu, S. Jiang, C. Song, The fusion of microfluidics and optics for on-chip detection and characterization of microalgae. Micromachines 12(10), 1137 (2021)

    Article  Google Scholar 

  205. Y. Shi, P. Ye, K. Yang, J. Meng, J. Guo, Z. Pan, Q. Bayin, W. Zhao, Application of microfluidics in immunoassay: recent advancements. J. Healthc. Eng. 2021, 2959843 (2021)

    Google Scholar 

  206. D. Lin, Z. Zheng, Q. Wang, H. Huang, Z. Huang, Y. Yu, S. Qiu, C. Wen, M. Cheng, S. Feng, Label-free optical sensor based on red blood cells laser tweezers Raman spectroscopy analysis for ABO blood typing. Opt. Express 24(21), 24750–24759 (2016)

    Article  ADS  Google Scholar 

  207. W. Jia, P. Chen, W. Chen, Y. Li, Raman characterizations of red blood cells with β-thalassemia using laser tweezers Raman spectroscopy. Medicine 97, 39 (2018)

    Google Scholar 

  208. Y. Singh, A. Chowdhury, R. Dasgupta, S.K. Majumder, The effects of short term hyperglycemia on human red blood cells studied using Raman spectroscopy and optical trap. Eur. Biophys. J. 50(6), 867–876 (2021)

    Article  Google Scholar 

  209. J. Lukose, N. Mithun, G. Mohan, S. Shastry, S. Chidangil, Optical tweezers combined with micro-Raman investigation of alcohol-induced changes on single, live red blood cells in blood plasma. J. Raman Spectrosc. 50(10), 1367–1374 (2019)

    Article  ADS  Google Scholar 

  210. J. Lukose, N. Mithun, G. Mohan, S. Shastry, S. Chidangil, Normal saline-induced deoxygenation of red blood cells probed by optical tweezers combined with the micro-Raman technique. RSC Adv. 9(14), 7878–7884 (2019)

    Article  ADS  Google Scholar 

  211. N. Mithun, J. Lukose, G. Mohan, S. Shastry, S. Chidangil, Single cell spectroscopy of red blood cells in intravenous crystalloid fluids. Spectrochimica Acta Part A Mol. Biomol. Spectrosc. 257, 119726 (2021)

    Article  Google Scholar 

  212. F. Sinjab, D. Awuah, G. Gibson, M. Padgett, A.M. Ghaemmaghami, I. Notingher, Holographic optical trapping Raman micro-spectroscopy for non-invasive measurement and manipulation of live cells. Opt. Express 26(19), 25211–25225 (2018)

    Article  ADS  Google Scholar 

  213. F. Sinjab, H.M. Elsheikha, M. Dooley, I. Notingher, Induction and measurement of the early stage of a host-parasite interaction using a combined optical trapping and Raman microspectroscopy system. J. Biophotonics 13(2), e201960065 (2020)

    Article  Google Scholar 

  214. S. Barkur, D. Mathur, S. Chidangil, A laser Raman tweezers study of eryptosis. J. Raman Spectrosc. 49(7), 1155–1164 (2018)

    Article  ADS  Google Scholar 

  215. S. Qiu, M. Li, J. Liu, X. Chen, T. Lin, Y. Xu, Y. Chen, Y. Weng, Y. Pan, S. Feng, X. Lin, L. Zhang, D. Lin, Study on the chemodrug-induced effect in nasopharyngeal carcinoma cells using laser tweezer Raman spectroscopy. Biomed. Opt. Express 11(4), 1819–1833 (2020)

    Article  Google Scholar 

  216. S. Bernatova, K. Rebrosova, Z. Pilat, M. Sery, A. Gjevik, O. Samek, J. Jezek, M. Siler, M. Kizovsky, T. Klementova, V. Hola, F. Ruzicka, P. Zemanek, Rapid detection of antibiotic sensitivity of Staphylococcus aureus by Raman tweezers. Eur. Phys. J. Plus 136(2), 233 (2021)

    Article  Google Scholar 

  217. K. Rebrosava, S. Bernatova, M. Siler, M. Uhlirova, O. Samek, J. Jezek, V. Hola, F. Ruzicka, P. Zemanek, Raman spectroscopy-a tool for rapid differentiation among microbes causing urinary tract infections. Anal Chimica Acta 1191, 339292 (2022)

    Article  Google Scholar 

  218. L. Shao, Z. Liu, J. Hu, D. Gunawardena, H.-Y. Tam, Optofluidics in microstructured optical fibers. Micromachines 9(4), 145 (2018)

    Article  Google Scholar 

  219. J.M. Zhu, X.Q. Zhu, Y.F. Zuo, X.J. Hu, Y. Shi, L. Liang, Y. Yang, Optofluidics: the interaction between light and flowing liquids in integrated devices. Opto-Electron. Adv. 2(11), 10 (2019)

    Article  Google Scholar 

  220. S. Chen, R. Hao, Y. Zhang, H. Yang, Optofluidics in bio-imaging applications. Photon. Res. 7(5), 532–542 (2019)

    Article  Google Scholar 

  221. J. Chen, J.F.-C. Loo, D. Wang, Y. Zhang, S.-K. Kong, H.-P. Ho, Thermal optofluidics: principles and applications. Adv. Opt. Mater. 8(1), 1900829 (2020)

    Article  Google Scholar 

  222. D. Hess, T. Yang, S. Stavrakis, Droplet-based optofluidic systems for measuring enzyme kinetics. Anal. Bioanal. Chem. 412(14), 3265–3283 (2020)

    Article  Google Scholar 

  223. A. Keloth, O. Anderson, D. Risbridger, L. Paterson, Single cell isolation using optical tweezers. Micromachines 9(9), 434 (2018)

    Article  Google Scholar 

  224. D. Chang, S. Sakuma, K. Kera, N. Uozumi, F. Arai, Measurement of the mechanical properties of single Synechocystis sp. strain PCC6803 cells in different osmotic concentrations using a robot-integrated microfluidic chip. Lab Chip 18(8), 1241–1249 (2018)

    Article  Google Scholar 

  225. Z. Pilát, S. Bernatová, J. Ježek, J. Kirchhoff, A. Tannert, U. Neugebauer, O. Samek, P. Zemánek, Microfluidic cultivation and laser tweezers raman spectroscopy of E. coli under antibiotic stress. Sensors 18(5), 1623 (2018)

    Article  ADS  Google Scholar 

  226. T. Fang, W. Shang, C. Liu, J. Xu, D. Zhao, Y. Liu, A. Ye, Nondestructive identification and accurate isolation of single cells through a chip with Raman optical tweezers. Anal. Chem. 91(15), 9932–9939 (2019)

    Article  Google Scholar 

  227. K.S. Lee, F.C. Pereira, M. Palatinszky, L. Behrendt, U. Alcolombri, D. Berry, M. Wagner, R. Stocker, Optofluidic Raman-activated cell sorting for targeted genome retrieval or cultivation of microbial cells with specific functions. Nat. Protoc. 16(2), 634–676 (2021)

    Article  Google Scholar 

  228. K. Lee, E. Shirshin, N. Rovnyagina, F. Yaya, Z. Boujja, A. Priezzhev, C. Wagner, Dextran adsorption onto red blood cells revisited: single cell quantification by laser tweezers combined with microfluidics. Biomed. Opt. Express 9(6), 2755–2764 (2018)

    Article  Google Scholar 

  229. P. Tewari Kumar, D. Decrop, S. Safdar, I. Passaris, T. Kokalj, R. Puers, A. Aertsen, D. Spasic, J. Lammertyn, Digital microfluidics for single bacteria capture and selective retrieval using optical tweezers. Micromachines 11(3), 308 (2020)

    Article  Google Scholar 

  230. G.F. Vasse, P. Buzón, B.N. Melgert, W.H. Roos, P. van Rijn, Single cell reactomics: real-time single-cell activation kinetics of optically trapped macrophages. Small Methods 5(4), 2000849 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (61903069, 62003081), the Fundamental Research Funds for the Central Universities under Grant N2223034, the Scientific and Technical Research Project in Colleges and Universities of Hebei Province (BJ2021101), and the Hebei Natural Science Foundation (F2020501040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Hu.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Ye, Jy., Zhao, Y. et al. Advanced optical tweezers on cell manipulation and analysis. Eur. Phys. J. Plus 137, 1024 (2022). https://doi.org/10.1140/epjp/s13360-022-03190-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03190-9

Navigation