Skip to main content
Log in

Precessing and periodic orbits around Lee–Wick black holes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate neutral massive particles’ precessing and periodic motions around Lee–Wick black holes. By deriving the secular periastron precession for the massive particles orbiting around Lee–Wick black holes, we obtain a preliminary bound on the UV scale of the spacetime in view of the orbit of the S2 star around Sgr A*. It shows that the precessing in the weak gravitational field is very similar to Schwarzschild ones. After that, in the strong gravitational field, periodic motions for the particles are studied by taking a taxonomy into account. And it suggests that the variation of the UV scale can change the taxonomy for the quasi-periodic and periodic motions. It also leads to a transition from a quasi-periodic motion to periodic motion, and vice versa. These maybe provide us a chance to identify some information of Lee–Wick black holes by using the orbital dynamics of the massive particles nearby the strong gravitational field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875(1), L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7

  2. Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875(1), L2 (2019). https://doi.org/10.3847/2041-8213/ab0c96

  3. Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875(1), L3 (2019). https://doi.org/10.3847/2041-8213/ab0c57

  4. Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875(1), L4 (2019). https://doi.org/10.3847/2041-8213/ab0e85

  5. Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875(1), L5 (2019). https://doi.org/10.3847/2041-8213/ab0f43

  6. Event Horizon Telescope Collaboration, Astrophys. J. Lett. 875(1), L6 (2019). https://doi.org/10.3847/2041-8213/ab1141

  7. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

  8. LIGO Scientific Collaboration and Virgo Collaboration, Physical Review X 6(4), 041015 (2016). https://doi.org/10.1103/PhysRevX.6.041015

  9. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116(24), 241103 (2016). https://doi.org/10.1103/PhysRevLett.116.241103

  10. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 118(22), 221101 (2017). https://doi.org/10.1103/PhysRevLett.118.221101

  11. LIGO Scientific Collaboration and Virgo Collaboration, Astrophys. J. Lett. 851(2), L35 (2017). https://doi.org/10.3847/2041-8213/aa9f0c

  12. LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 119(14), 141101 (2017). https://doi.org/10.1103/PhysRevLett.119.141101

  13. J. Bardeen, in in Proceedings of International Conference GR5, Tbilisi, Georgia, URSS (1968), p. 174

  14. S.A. Hayward, Phys. Rev. Lett. 96(3), 031103 (2006). https://doi.org/10.1103/PhysRevLett.96.031103

    Article  ADS  MathSciNet  Google Scholar 

  15. C. Bejarano, G.J. Olmo, D. Rubiera-Garcia, Phys. Rev. D 95(6), 064043 (2017). https://doi.org/10.1103/PhysRevD.95.064043

    Article  ADS  MathSciNet  Google Scholar 

  16. C.C. Menchon, G.J. Olmo, D. Rubiera-Garcia, Phys. Rev. D 96(10), 104028 (2017). https://doi.org/10.1103/PhysRevD.96.104028

    Article  ADS  MathSciNet  Google Scholar 

  17. C. Barceló, S. Liberati, S. Sonego, M. Visser, Phys. Rev. D 77(4), 044032 (2008). https://doi.org/10.1103/PhysRevD.77.044032

    Article  ADS  Google Scholar 

  18. S.D. Mathur, Class. Quantum Gravity 26(22), 224001 (2009). https://doi.org/10.1088/0264-9381/26/22/224001

    Article  ADS  Google Scholar 

  19. S.D. Mathur, D. Turton, J. High Energy Phys. 2014, 34 (2014). https://doi.org/10.1007/JHEP01(2014)034

    Article  Google Scholar 

  20. B. Guo, S. Hampton, S.D. Mathur, J. High Energy Phys. 2018(7), 162 (2018). https://doi.org/10.1007/JHEP07(2018)162

    Article  Google Scholar 

  21. R. Carballo-Rubio, F. Di Filippo, S. Liberati, M. Visser, Phys. Rev. D 98(12), 124009 (2018). https://doi.org/10.1103/PhysRevD.98.124009

    Article  ADS  MathSciNet  Google Scholar 

  22. V.P. Frolov, G.A. Vilkovisky, Phys. Lett. B 106, 307 (1981). https://doi.org/10.1016/0370-2693(81)90542-6

    Article  ADS  MathSciNet  Google Scholar 

  23. C. Rovelli, F. Vidotto, Int. J. Mod. Phys. D 23(12), 1442026 (2014). https://doi.org/10.1142/S0218271814420267

    Article  ADS  Google Scholar 

  24. M. Ambrus, P. Hájíček, Phys. Rev. D 72(6), 064025 (2005). https://doi.org/10.1103/PhysRevD.72.064025

    Article  ADS  MathSciNet  Google Scholar 

  25. S. Ansoldi, arXiv e-prints arXiv:0802.0330 (2008)

  26. C. Bambi, L. Modesto, Phys. Lett. B 721, 329 (2013). https://doi.org/10.1016/j.physletb.2013.03.025

    Article  ADS  MathSciNet  Google Scholar 

  27. V.P. Frolov, Phys. Rev. D 94(10), 104056 (2016). https://doi.org/10.1103/PhysRevD.94.104056

    Article  ADS  MathSciNet  Google Scholar 

  28. V. Balasubramanian, J. de Boer, E. Keski-Vakkuri, S.F. Ross, Phys. Rev. D 64, 064011 (2001). https://doi.org/10.1103/PhysRevD.64.064011

    Article  ADS  MathSciNet  Google Scholar 

  29. V.S. Rychkov, J. High Energy Phys. 2006(1), 063 (2006). https://doi.org/10.1088/1126-6708/2006/01/063

    Article  Google Scholar 

  30. J. Maldacena, L. Maoz, J. High Energy Phys. 2002(12), 055 (2002). https://doi.org/10.1088/1126-6708/2002/12/055

    Article  Google Scholar 

  31. K. Skenderis, M. Taylor, Phys. Rev. Lett. 98(7), 071601 (2007). https://doi.org/10.1103/PhysRevLett.98.071601

    Article  ADS  MathSciNet  Google Scholar 

  32. O. Lunin, S.D. Mathur, Nucl. Phys. B 610(1), 49 (2001). https://doi.org/10.1016/S0550-3213(01)00321-2

    Article  ADS  Google Scholar 

  33. O. Lunin, S.D. Mathur, Nucl. Phys. B 623(1), 342 (2002). https://doi.org/10.1016/S0550-3213(01)00620-4

    Article  ADS  Google Scholar 

  34. I. Kanitscheider, K. Skenderis, M. Taylor, J. High Energy Phys. 2007(4), 023 (2007). https://doi.org/10.1088/1126-6708/2007/04/023

    Article  Google Scholar 

  35. A. Almheiri, D. Marolf, J. Polchinski, J. Sully, J. High Energy Phys. 2013, 62 (2013). https://doi.org/10.1007/JHEP02(2013)062

    Article  Google Scholar 

  36. L. Susskind, arXiv e-prints arXiv:1208.3445 (2012)

  37. L. Modesto, I.L. Shapiro, Phys. Lett. B 755, 279 (2016). https://doi.org/10.1016/j.physletb.2016.02.021

    Article  ADS  MathSciNet  Google Scholar 

  38. L. Modesto, Nucl. Phys. B 909, 584 (2016). https://doi.org/10.1016/j.nuclphysb.2016.06.004

    Article  ADS  Google Scholar 

  39. G.P. de Brito, P.I.C. Caneda, Y.M.P. Gomes, J.T. Guaitolini Junior, V. Nikoofard, arXiv e-prints arXiv:1610.01480 (2016)

  40. A. Accioly, B.L. Giacchini, I.L. Shapiro, Phys. Rev. D 96(10), 104004 (2017). https://doi.org/10.1103/PhysRevD.96.104004

    Article  ADS  Google Scholar 

  41. B.L. Giacchini, Phys. Lett. B 766, 306 (2017). https://doi.org/10.1016/j.physletb.2017.01.019

    Article  ADS  Google Scholar 

  42. C. Bambi, L. Modesto, Y. Wang, Phys. Lett. B 764, 306 (2017). https://doi.org/10.1016/j.physletb.2016.11.060

    Article  ADS  MathSciNet  Google Scholar 

  43. S.S. Zhao, Y. Xie, Phys. Lett. B 774, 357 (2017). https://doi.org/10.1016/j.physletb.2017.09.090

    Article  ADS  Google Scholar 

  44. X.Y. Zhu, Y. Xie, Eur. Phys. J. C 80, 444 (2020). https://doi.org/10.1140/epjc/s10052-020-8021-8

    Article  ADS  Google Scholar 

  45. C.M. Will, Theory and Experiment in Gravitational Physics (Cambridge University Press, Cambridge, England, 1993)

    Book  Google Scholar 

  46. R.S. Park, W.M. Folkner, A.S. Konopliv, J.G. Williams, D.E. Smith, M.T. Zuber, Astron. J. 153(3), 121 (2017). https://doi.org/10.3847/1538-3881/aa5be2

    Article  ADS  Google Scholar 

  47. L. Iorio, E.N. Saridakis, Mon. Not. R. Astron. Soc. 427, 1555 (2012). https://doi.org/10.1111/j.1365-2966.2012.21995.x

    Article  ADS  Google Scholar 

  48. L. Iorio, J. Cosmol. Astropart. Phys. 7, 001 (2012). https://doi.org/10.1088/1475-7516/2012/07/001

    Article  ADS  Google Scholar 

  49. Y. Xie, X.M. Deng, Mon. Not. R. Astron. Soc. 433, 3584 (2013). https://doi.org/10.1093/mnras/stt991

    Article  ADS  Google Scholar 

  50. L. Iorio, Mon. Not. R. Astron. Soc. 437, 3482 (2014). https://doi.org/10.1093/mnras/stt2147

    Article  ADS  Google Scholar 

  51. M.L. Ruggiero, N. Radicella, Phys. Rev. D 91(10), 104014 (2015). https://doi.org/10.1103/PhysRevD.91.104014

    Article  ADS  MathSciNet  Google Scholar 

  52. I. De Martino, R. Lazkoz, M. De Laurentis, Phys. Rev. D 97(10), 104067 (2018). https://doi.org/10.1103/PhysRevD.97.104067

    Article  ADS  MathSciNet  Google Scholar 

  53. X.M. Deng, Y. Xie, Eur. Phys. J. C 75, 539 (2015). https://doi.org/10.1140/epjc/s10052-015-3771-4

    Article  ADS  Google Scholar 

  54. A. Hees, T. Do, A.M. Ghez, G.D. Martinez, S. Naoz, E.E. Becklin, A. Boehle, S. Chappell, D. Chu, A. Dehghanfar, K. Kosmo, J.R. Lu, K. Matthews, M.R. Morris, S. Sakai, R. Schödel, G. Witzel, Phys. Rev. Lett. 118(21), 211101 (2017). https://doi.org/10.1103/PhysRevLett.118.211101

    Article  ADS  Google Scholar 

  55. Gravity Collaboration, Astron. Astrophys. 636, L5 (2020). https://doi.org/10.1051/0004-6361/202037813

  56. M. De Laurentis, I. De Martino, R. Lazkoz, Phys. Rev. D 97(10), 104068 (2018). https://doi.org/10.1103/PhysRevD.97.104068

    Article  ADS  MathSciNet  Google Scholar 

  57. M. De Laurentis, I. De Martino, R. Lazkoz, Eur. Phys. J. C 78(11), 916 (2018). https://doi.org/10.1140/epjc/s10052-018-6401-0

    Article  ADS  Google Scholar 

  58. T. Damour, G. Esposito-Farèse, Phys. Rev. D 53, 5541 (1996). https://doi.org/10.1103/PhysRevD.53.5541

    Article  ADS  MathSciNet  Google Scholar 

  59. M. Kramer, I.H. Stairs, R.N. Manchester, M.A. McLaughlin, A.G. Lyne, R.D. Ferdman, M. Burgay, D.R. Lorimer, A. Possenti, N. D’Amico, J.M. Sarkissian, G.B. Hobbs, J.E. Reynolds, P.C.C. Freire, F. Camilo, Science 314, 97 (2006). https://doi.org/10.1126/science.1132305

  60. M. De Laurentis, R. De Rosa, F. Garufi, L. Milano, Mon. Not. R. Astron. Soc. 424, 2371 (2012). https://doi.org/10.1111/j.1365-2966.2012.21410.x

    Article  ADS  Google Scholar 

  61. M. De Laurentis, I. De Martino, Mon. Not. R. Astron. Soc. 431, 741 (2013). https://doi.org/10.1093/mnras/stt216

    Article  ADS  Google Scholar 

  62. X.M. Deng, Y. Xie, T.Y. Huang, Phys. Rev. D 79(4), 044014 (2009). https://doi.org/10.1103/PhysRevD.79.044014

    Article  ADS  Google Scholar 

  63. X.M. Deng, Eur. Phys. J. Plus 132, 85 (2017). https://doi.org/10.1140/epjp/i2017-11376-1

    Article  Google Scholar 

  64. L. Iorio, Mon. Not. R. Astron. Soc. 411, 167 (2011). https://doi.org/10.1111/j.1365-2966.2010.17669.x

    Article  ADS  Google Scholar 

  65. Y. Xie, X.M. Deng, Mon. Not. R. Astron. Soc. 438, 1832 (2014). https://doi.org/10.1093/mnras/stt2325

    Article  ADS  Google Scholar 

  66. M. Vargas dos Santos, D.F. Mota, Phys. Lett. B 769, 485 (2017). https://doi.org/10.1016/j.physletb.2017.04.030

    Article  ADS  Google Scholar 

  67. M.L. Ruggiero, L. Iorio, J. Cosmol. Astropart. Phys. 2020(6), 042 (2020). https://doi.org/10.1088/1475-7516/2020/06/042

    Article  Google Scholar 

  68. K. Glampedakis, D. Kennefick, Phys. Rev. D 66(4), 044002 (2002). https://doi.org/10.1103/PhysRevD.66.044002

    Article  ADS  MathSciNet  Google Scholar 

  69. L. Barack, C. Cutler, Phys. Rev. D 69(8), 082005 (2004). https://doi.org/10.1103/PhysRevD.69.082005

    Article  ADS  Google Scholar 

  70. R. Haas, Phys. Rev. D 75(12), 124011 (2007). https://doi.org/10.1103/PhysRevD.75.124011

    Article  ADS  MathSciNet  Google Scholar 

  71. J. Healy, J. Levin, D. Shoemaker, Phys. Rev. Lett. 103(13), 131101 (2009). https://doi.org/10.1103/PhysRevLett.103.131101

    Article  ADS  Google Scholar 

  72. J. Levin, G. Perez-Giz, Phys. Rev. D 77(10), 103005 (2008). https://doi.org/10.1103/PhysRevD.77.103005

    Article  ADS  MathSciNet  Google Scholar 

  73. V. Misra, J. Levin, Phys. Rev. D 82(8), 083001 (2010). https://doi.org/10.1103/PhysRevD.82.083001

    Article  ADS  Google Scholar 

  74. G.Z. Babar, A.Z. Babar, Y.K. Lim, Phys. Rev. D 96(8), 084052 (2017). https://doi.org/10.1103/PhysRevD.96.084052

    Article  ADS  MathSciNet  Google Scholar 

  75. P. Bambhaniya, A.B. Joshi, D. Dey, P.S. Joshi, Phys. Rev. D 100(12), 124020 (2019). https://doi.org/10.1103/PhysRevD.100.124020

    Article  ADS  MathSciNet  Google Scholar 

  76. T.Y. Zhou, Y. Xie, Eur. Phys. J. C 80(11), 1070 (2020). https://doi.org/10.1140/epjc/s10052-020-08661-w

    Article  ADS  Google Scholar 

  77. S.W. Wei, J. Yang, Y.X. Liu, Phys. Rev. D 99(10), 104016 (2019). https://doi.org/10.1103/PhysRevD.99.104016

    Article  ADS  MathSciNet  Google Scholar 

  78. C.Q. Liu, C.K. Ding, J.L. Jing, Commun. Theor. Phys. 71(12), 1461 (2019). https://doi.org/10.1088/0253-6102/71/12/1461

    Article  ADS  MathSciNet  Google Scholar 

  79. P. Jai-akson, A. Chatrabhuti, O. Evnin, L. Lehner, Phys. Rev. D 96(4), 044031 (2017). https://doi.org/10.1103/PhysRevD.96.044031

    Article  ADS  MathSciNet  Google Scholar 

  80. H.Y. Lin, X.M. Deng, Phys. Dark Univ. 31, 100745 (2021). https://doi.org/10.1016/j.dark.2020.100745

    Article  Google Scholar 

  81. X.M. Deng, Eur. Phys. J. C 80(6), 489 (2020). https://doi.org/10.1140/epjc/s10052-020-8067-7

    Article  ADS  Google Scholar 

  82. X.M. Deng, Phys. Dark Univ. 30, 100629 (2020). https://doi.org/10.1016/j.dark.2020.100629

    Article  Google Scholar 

  83. B. Gao, X.M. Deng, Ann. Phys. 418, 168194 (2020). https://doi.org/10.1016/j.aop.2020.168194

    Article  Google Scholar 

  84. B. Gao, X.M. Deng, Mod. Phys. Lett. A 36(33), 2150237 (2021). https://doi.org/10.1142/S0217732321502370

    Article  ADS  Google Scholar 

  85. Z. Li, C. Bambi, Phys. Rev. D 87(12), 124022 (2013). https://doi.org/10.1103/PhysRevD.87.124022

    Article  ADS  Google Scholar 

  86. S.W. Hawking, Phys. Rev. Lett. 26(21), 1344 (1971). https://doi.org/10.1103/PhysRevLett.26.1344

    Article  ADS  Google Scholar 

  87. W. Rindler, Relativity: Special, General, and Cosmological, 2nd edn. (Oxford University Press, Oxford, UK, 2006)

  88. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (Freeman, San Francisco, 1973)

    Google Scholar 

  89. S. Hussain, I. Hussain, M. Jamil, Eur. Phys. J. C 74, 3210 (2014)

    Article  Google Scholar 

  90. A.A. Abdujabbarov, B.J. Ahmedov, N.B. Jurayeva, Phys. Rev. D 87(6), 064042 (2013). https://doi.org/10.1103/PhysRevD.87.064042

    Article  ADS  Google Scholar 

  91. J. Rayimbaev, A. Abdujabbarov, M. Jamil, B. Ahmedov, W.B. H, Phys. Rev. D 102(8), 084016 (2020). https://doi.org/10.1103/PhysRevD.102.084016

  92. J. Rayimbaev, S. Shaymatov, M. Jamil, Eur. Phys. J. C 81(8), 699 (2021). https://doi.org/10.1140/epjc/s10052-021-09488-9

    Article  ADS  Google Scholar 

  93. B. Gao, X.M. Deng, Eur. Phys. J. C 81(11), 983 (2021). https://doi.org/10.1140/epjc/s10052-021-09782-6

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (Grant Nos. 12173094, 11773080 and 11473072) and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA15016700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Mei Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, HY., Deng, XM. Precessing and periodic orbits around Lee–Wick black holes. Eur. Phys. J. Plus 137, 176 (2022). https://doi.org/10.1140/epjp/s13360-022-02391-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-02391-6

Navigation