Skip to main content
Log in

Extending \(\Lambda (t)-\)CDM to the inflationary epoch using dynamical foliations and a pre-inflationary vacuum energy from 5D geometrical vacuum as a unifying mechanism

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper assuming a 5D quantum pre-inflationary vacuum energy, we propose a manner to extend some \(\Lambda (t)\)-CDM models to the inflationary period by using dynamical foliations of the five-dimensional (5D) Ricci-flat space-time manifold, regarding a non-compact extra space-like coordinate. In this formalism, we achieve also a geometrical unification of inflation and the present accelerating epoch. In this approach, inflation is generated by a pre-inflationary quantum vacuum energy that maintains the 5D classical vacuum on cosmological scales. We obtain from geometrical conditions that we can model the presence of the pre-inflationary vacuum energy in 4D as a dynamical cosmological constant. In this model, the 4D inflationary period is governed by a power law expansion and for certain values of some parameters of the model, we obtain an spectral index satisfying \(0.9607\le n_s\le 0.9691\) and a scalar-to-tensor ratio \(r=0.098\), values that fit well according to Planck 2018 results. The 4D inflationary potential is induced for the 5D geometry and the 4D pre-inflationary potential is determined by the model and its contribution is necessary so that \(n_s\) and r can fit the observational data. We also show that in this theoretical framework, the present acceleration in the expansion of the universe can be explained due to a remanent of this pre-inflationary vacuum energy scaled to the present epoch and that its description can be done with the same \(\Lambda (t)\). In this period, we obtain a deceleration parameter in agreement with Planck 2018 data under certain restrictions of the parameters of the model. From the geometrical point of view, \(\Lambda (t)\) is depending on the dynamical foliation of the 5D space-time manifold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comments: The experimental data used in this manuscript was published by PLANCK collaboration https://doi.org/10.1051/0004-6361/201833910.]

References

  1. S. Perlmutter et al., Nature (London) 391, 51 (1998)

    Article  ADS  Google Scholar 

  2. A. Riess et al., Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  3. Eric V. Linder, Gen. Relativ. Gravit. 40, 329 (2008)

    Article  ADS  Google Scholar 

  4. J.S. Alcaniz, Braz. J. Phys. 36, 1109 (2006)

    Article  ADS  Google Scholar 

  5. R. Schitzhold, Phys. Rev. Lett. 89, 081302 (2002)

    Article  ADS  Google Scholar 

  6. S. Banerjee et al., Phys. Lett. B 611, 27 (2005)

    Article  ADS  Google Scholar 

  7. C. Pigozzo, M.A. Dantas, S. Carneiro, J.S. Alcaniz, JCAP 08, 022 (2011)

    Article  ADS  Google Scholar 

  8. F.R. Urban, A.R. Zhitnitsky, Nucl. Phys. B 835, 135 (2010)

    Article  ADS  Google Scholar 

  9. L.M. Reyes, C. Moreno, J.E. Madriz-Aguilar, Eur. Phys. J. Plus 127, 142 (2012)

    Article  Google Scholar 

  10. J.M. Overduin, F.I. Cooperstock, Phys. Rev. D 58, 43506 (1998)

    Article  ADS  Google Scholar 

  11. A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. Lett. 96, 141301 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. T. Zhu, A. Wang, G. Cleaver, K. Kirsten, Q. Sheng, Phys. Rev. D 96, 083520 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bao-Fei Li, P. Singh, A. Wang, Phys. Rev. D100 (2019) 063513

  14. Wei- Jian Jin, Y. Ma, T. Zhu, JCAP 02 (2019) 010

  15. M. Bellini, Phys. Lett. B 771, 227–229 (2017)

    Article  ADS  Google Scholar 

  16. H. Nastase, JHEP 12, 010 (2020)

    Google Scholar 

  17. A. Gruppuso, A. Sagnotti, Int. J. Mod. Phys. D24 (2015) 1544008, n\(^0\)12

  18. J.M. Cline, J. Vinet, Phys. Rev. D 68, 025015 (2003)

    Article  ADS  Google Scholar 

  19. P.S. Wesson, Five-Dimensional Physics (World Scientific, Singapore, 2006)

    Book  Google Scholar 

  20. J.M. Overduin, P.S. Wesson, Phys. Rept. 283, 302 (1997)

    Article  ADS  Google Scholar 

  21. J.M. Overduin, P.S. Wesson, B. Mashhoon, Astron. Astrophys. 473, 727 (2007)

    Article  ADS  Google Scholar 

  22. P.S. Wesson, B. Mashhoon and J. M. Overduin, Int. J. Mod. Phys. D 17 (2008) n\(^{o}\)13, 2527-2533

  23. J.E. Madriz-Aguilar, J. Zamarripa, A. Peraza, J.A. Licea, Phys. Dark Univ. 18, 11–16 (2017)

    Article  Google Scholar 

  24. M. Bellini, J.E. Madriz-Aguilar, M. Montes, P.A. Sánchez, Phys. Dark. Univ. 25, 100309 (2019)

    Article  Google Scholar 

  25. M. Bellini, Phys. Lett. 632, 610 (2006). ArXiv: gr-qc/0510110

    Article  Google Scholar 

  26. J. Ponce de Leon, Mod. Phys. Lett. A 21, 947–959 (2006)

    Article  ADS  Google Scholar 

  27. J. Ponce de Leon, Int. J. Mod. Phys. D 15, 1237–1257 (2006)

    Article  ADS  Google Scholar 

  28. J.E. Madriz-Aguilar, M. Bellini, M.A.S. Cruz, Grav. Cosmol. 14, 286–291 (2008)

    Article  ADS  Google Scholar 

  29. L.M. Reyes, C. Moreno, J.E. Madriz-Aguilar, Eur. Phys. J. Plus 127, 142 (2012)

    Article  Google Scholar 

  30. J.S. Alcaniz, JCAP 1108, 022 (2011)

    Google Scholar 

  31. Planck Collaboration (N. Aghanim et. al) (2018) 72pp. ArXiv:1807.06209 [astro-ph]

  32. H.A. Borges, S. Carneiro, Gen. Rel. Grav. 37, 1385–1394 (2005)

    Article  ADS  Google Scholar 

  33. N. Aghanim et al. (Planck Collaboration), (2018) ArXiv: 1807.06209

Download references

Acknowledgements

J.E. Madriz-Aguilar, M. Montes and J. A. Licea acknowledge CONACYT México and Departamento de Matemáticas of Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI) of Universidad de Guadalajara for financial support. J. Zamarripa and C. De Loza acknowledge CONACYT México and Centro Universitario de los Valles of Universidad de Guadalajara for financial support. A. Peraza acknowledges Departamento de Física of CUCEI of Universidad de Guadalajara for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Edgar Madriz Aguilar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar, J.E.M., Zamarripa, J., Montes, M. et al. Extending \(\Lambda (t)-\)CDM to the inflationary epoch using dynamical foliations and a pre-inflationary vacuum energy from 5D geometrical vacuum as a unifying mechanism. Eur. Phys. J. Plus 137, 135 (2022). https://doi.org/10.1140/epjp/s13360-021-02143-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-02143-y

Navigation