Skip to main content
Log in

Magnetic dipole moment of the \(Z_{cs}(3985)\) state: diquark–antidiquark and molecular pictures

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We calculate the magnetic dipole moment of the newly observed charged hidden-charmed open strange \( Z_{cs}(3985)^- \) state, recently observed by BESIII Collaboration. Based on the information provided by the experiment and theoretical studies followed the observation, we assign the quantum numbers \( J^{P} = 1^{+}\) and the quark composition \( c {{\bar{c}}} s{{\bar{u}}} \) to this state and estimate the magnetic dipole moment of this resonance in both the compact diquark–antidiquark and molecular pictures. We apply the light cone QCD formalism and use the distribution amplitudes of the on-shell photon with different twists. The obtained results in both pictures are consistent with each other within the errors. The magnitude of the magnetic dipole moment shows that it is accessible in the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S.K. Choi et al., Belle. Phys. Rev. Lett. 100, 142001 (2008). arXiv:0708.1790 [hep-ex]

    Article  ADS  Google Scholar 

  2. R. Aaij et al., LHCb. Phys. Rev. Lett. 112, 222002 (2014). arXiv:1404.1903 [hep-ex]

    Article  ADS  Google Scholar 

  3. R. Mizuk et al., Belle. Phys. Rev. D 78, 072004 (2008). arXiv:0806.4098 [hep-ex]

    Article  ADS  Google Scholar 

  4. M. Ablikim et al., BESIII. Phys. Rev. Lett. 110, 252001 (2013). arXiv:1303.5949 [hep-ex]

    Article  ADS  Google Scholar 

  5. Z. Q. Liu et al. (Belle), Phys. Rev. Lett. 110, 252002 (2013), [Erratum: Phys. Rev. Lett. 111, 019901 (2013)], arXiv:1304.0121 [hep-ex]

  6. M. Ablikim et al., BESIII. Phys. Rev. Lett. 111, 242001 (2013). arXiv:1309.1896 [hep-ex]

    Article  ADS  Google Scholar 

  7. M. Ablikim et al., BESIII. Phys. Rev. Lett. 112, 132001 (2014). arXiv:1308.2760 [hep-ex]

    Article  ADS  Google Scholar 

  8. K. Chilikin et al., Belle. Phys. Rev. D 90, 112009 (2014). arXiv:1408.6457 [hep-ex]

    Article  ADS  Google Scholar 

  9. X.L. Wang et al., Belle. Phys. Rev. D 91, 112007 (2015). arXiv:1410.7641 [hep-ex]

    Article  ADS  Google Scholar 

  10. I. Adachi (Belle), in 9th Conference on Flavor Physics and CP Violation (2011) arXiv:1105.4583 [hep-ex]

  11. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 93, 074002 (2016). arXiv:1601.03847 [hep-ph]

    Article  ADS  Google Scholar 

  12. S.S. Agaev, K. Azizi, H. Sundu, Phys. Rev. D 96, 034026 (2017). arXiv:1706.01216 [hep-ph]

    Article  ADS  Google Scholar 

  13. R. Faccini, A. Pilloni, A.D. Polosa, Mod. Phys. Lett. A 27, 1230025 (2012). arXiv:1209.0107 [hep-ph]

    Article  ADS  Google Scholar 

  14. A. Esposito, A.L. Guerrieri, F. Piccinini, A. Pilloni, A.D. Polosa, Int. J. Mod. Phys. A 30, 1530002 (2015). arXiv:1411.5997 [hep-ph]

    Article  ADS  Google Scholar 

  15. H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Phys. Rept. 639, 1 (2016). arXiv:1601.02092 [hep-ph]

    Article  ADS  Google Scholar 

  16. A. Ali, J.S. Lange, S. Stone, Prog. Part. Nucl. Phys. 97, 123 (2017). arXiv:1706.00610 [hep-ph]

    Article  ADS  Google Scholar 

  17. A. Esposito, A. Pilloni, A.D. Polosa, Phys. Rept. 668, 1 (2017). arXiv:1611.07920 [hep-ph]

    Article  ADS  Google Scholar 

  18. S.L. Olsen, T. Skwarnicki, D. Zieminska, Rev. Mod. Phys. 90, 015003 (2018). arXiv:1708.04012 [hep-ph]

    Article  ADS  Google Scholar 

  19. R.F. Lebed, R.E. Mitchell, E.S. Swanson, Prog. Part. Nucl. Phys. 93, 143 (2017). arXiv:1610.04528 [hep-ph]

    Article  ADS  Google Scholar 

  20. F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, Rev. Mod. Phys. 90, 015004 (2018). arXiv:1705.00141 [hep-ph]

    Article  ADS  Google Scholar 

  21. M. Nielsen, F.S. Navarra, S.H. Lee, Phys. Rept. 497, 41 (2010). arXiv:0911.1958 [hep-ph]

    Article  ADS  Google Scholar 

  22. N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C.E. Thomas, A. Vairo, C.-Z. Yuan, Phys. Rept. 873, 1 (2020). arXiv:1907.07583 [hep-ex]

    Article  ADS  Google Scholar 

  23. Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Prog. Part. Nucl. Phys. 107, 237 (2019). arXiv:1903.11976 [hep-ph]

    Article  ADS  Google Scholar 

  24. S. Agaev, K. Azizi, H. Sundu, Turk. J. Phys. 44, 95 (2020). arXiv:2004.12079 [hep-ph]

    Article  Google Scholar 

  25. X.-K. Dong, F.-K. Guo, B.-S. Zou, Progr. Phys. 41, 65 (2021). arXiv:2101.01021 [hep-ph]

    Google Scholar 

  26. M. Ablikim et al., BESIII. Phys. Rev. Lett. 126, 102001 (2021). arXiv:2011.07855 [hep-ex]

    Article  ADS  Google Scholar 

  27. K. Azizi, N. Er, Eur. Phys. J. C 81, 61 (2021). arXiv:2011.11488 [hep-ph]

    Article  ADS  Google Scholar 

  28. M.-Z. Liu, J.-X. Lu, T.-W. Wu, J.-J. Xie, and L.-S. Geng, (2020), arXiv:2011.08720 [hep-ph]

  29. L. Meng, B. Wang, S.-L. Zhu, Phys. Rev. D 102, 111502 (2020). arXiv:2011.08656 [hep-ph]

    Article  ADS  Google Scholar 

  30. J.-Z. Wang, Q.-S. Zhou, X. Liu, T. Matsuki, Eur. Phys. J. C 81, 51 (2021). arXiv:2011.08628 [hep-ph]

    Article  ADS  Google Scholar 

  31. R. Chen, Q. Huang, Phys. Rev. D 103, 034008 (2021). arXiv:2011.09156 [hep-ph]

    Article  ADS  Google Scholar 

  32. X. Cao, J.-P. Dai, Z. Yang, Eur. Phys. J. C 81, 184 (2021). arXiv:2011.09244 [hep-ph]

    Article  ADS  Google Scholar 

  33. M.-C. Du, Q. Wang, and Q. Zhao, (2020), arXiv:2011.09225 [hep-ph]

  34. Z.-F. Sun and C.-W. Xiao, (2020), arXiv:2011.09404 [hep-ph]

  35. Q.-N. Wang, W. Chen, and H.-X. Chen, (2020), arXiv:2011.10495 [hep-ph]

  36. B. Wang, L. Meng, S.-L. Zhu, Phys. Rev. D 103, L021501 (2021). arXiv:2011.10922 [hep-ph]

    Article  ADS  Google Scholar 

  37. Z.-G. Wang, Chin. Phys. C 45, 073107 (2021). arXiv:2011.10959 [hep-ph]

    Article  ADS  Google Scholar 

  38. X. Jin, X. Liu, Y. Xue, H. Huang, and J. Ping, (2020), arXiv:2011.12230 [hep-ph]

  39. Y.A. Simonov, JHEP 04, 051 (2021). arXiv:2011.12326 [hep-ph]

    Article  ADS  Google Scholar 

  40. J. Y. Süngü, A. Türkan, H. Sundu, and E. V. Veliev, (2020), arXiv:2011.13013 [hep-ph]

  41. N. Ikeno, R. Molina, E. Oset, Phys. Lett. B 814, 136120 (2021). arXiv:2011.13425 [hep-ph]

    Article  Google Scholar 

  42. Z.-H. Guo, J.A. Oller, Phys. Rev. D 103, 054021 (2021). arXiv:2012.11904 [hep-ph]

    Article  ADS  Google Scholar 

  43. K. Zhu, Int. J. Mod. Phys. A 36, 2150126 (2021). arXiv:2101.10622 [hep-ph]

    Article  ADS  Google Scholar 

  44. Z.-G. Wang, Int. J. Mod. Phys. A 35, 2150107 (2021). arXiv:2012.11869 [hep-ph]

    Article  ADS  Google Scholar 

  45. V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. Lett. 94, 102003 (2005). arXiv:nucl-th/0412113

    Article  ADS  Google Scholar 

  46. V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D 73, 034003 (2006). arXiv:hep-ph/0512244

    Article  ADS  Google Scholar 

  47. V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D 77, 014027 (2008). arXiv:0709.4583 [hep-ph]

    Article  ADS  Google Scholar 

  48. V.I. Zakharov, L.A. Kondratyuk, L.A. Ponomarev, Yad. Fiz. 8, 783 (1968)

    Google Scholar 

  49. U. Ozdem, K. Azizi, Phys. Rev. D 96, 074030 (2017). arXiv:1707.09612 [hep-ph]

    Article  ADS  Google Scholar 

  50. Y.-J. Xu, Y.-L. Liu, C.-Y. Cui, and M.-Q. Huang, (2020), arXiv:2011.14313 [hep-ph]

  51. S. Weinberg, Phys. Rev. Lett. 110, 261601 (2013). arXiv:1303.0342 [hep-ph]

    Article  ADS  Google Scholar 

  52. W. Lucha, D. Melikhov, H. Sazdjian, Prog. Part. Nucl. Phys. 120, 103867 (2021). arXiv:2102.02542 [hep-ph]

    Article  Google Scholar 

  53. Y. Kondo, O. Morimatsu, T. Nishikawa, Phys. Lett. B 611, 93 (2005). arXiv:hep-ph/0404285

    Article  ADS  Google Scholar 

  54. S.H. Lee, H. Kim, Y. Kwon, Phys. Lett. B 609, 252 (2005). arXiv:hep-ph/0411104

    Article  ADS  Google Scholar 

  55. Z.-G. Wang, Int. J. Mod. Phys. A 30, 1550168 (2015). arXiv:1502.01459 [hep-ph]

    Article  ADS  Google Scholar 

  56. S.S. Agaev, K. Azizi, B. Barsbay, H. Sundu, Nucl. Phys. B 939, 130 (2019). arXiv:1806.04447 [hep-ph]

    Article  ADS  Google Scholar 

  57. H. Sundu, S.S. Agaev, K. Azizi, Eur. Phys. J. C 79, 215 (2019). arXiv:1812.10094 [hep-ph]

    Article  ADS  Google Scholar 

  58. R.M. Albuquerque, S. Narison, D. Rabetiarivony, Phys. Rev. D 103, 074015 (2021). arXiv:2101.07281 [hep-ph]

    Article  ADS  Google Scholar 

  59. R.M. Albuquerque, S. Narison, A. Rabemananjara, D. Rabetiarivony, G. Randriamanatrika, Phys. Rev. D 102, 094001 (2020). arXiv:2008.01569 [hep-ph]

    Article  ADS  Google Scholar 

  60. Z.-G. Wang, Int. J. Mod. Phys. A 35, 2050138 (2020). arXiv:1910.09981 [hep-ph]

    Article  ADS  Google Scholar 

  61. Z.-G. Wang, (2020b), arXiv:2005.12735 [hep-ph]

  62. S.J. Brodsky, J.R. Hiller, Phys. Rev. D 46, 2141 (1992)

    Article  ADS  Google Scholar 

  63. I.I. Balitsky, V.M. Braun, Nucl. Phys. B 311, 541 (1989)

    Article  ADS  Google Scholar 

  64. K. Azizi, A.R. Olamaei, S. Rostami, Eur. Phys. J. A 54, 162 (2018). arXiv:1801.06789 [hep-ph]

    Article  ADS  Google Scholar 

  65. B.L. Ioffe, Prog. Part. Nucl. Phys. 56, 232 (2006). arXiv:hep-ph/0502148

    Article  ADS  Google Scholar 

  66. V.M. Belyaev, B.L. Ioffe, Sov. Phys. JETP 57, 716 (1983)

    Google Scholar 

  67. P. Ball, V.M. Braun, N. Kivel, Nucl. Phys. B 649, 263 (2003). arXiv:hep-ph/0207307

    Article  ADS  Google Scholar 

  68. T. M. Aliev, A. Ozpineci, and M. Savci, Phys. Rev. D 66, 016002 (2002), [Erratum: Phys.Rev.D 67, 039901 (2003)], arXiv:hep-ph/0204035

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Azizi.

Appendix: Photon distribution amplitudes and wave functions

Appendix: Photon distribution amplitudes and wave functions

In this Appendix, we present the matrix elements \(\langle \gamma (q)\left| {\bar{q}}(x) \Gamma _i q(0) \right| 0\rangle \) and \(\langle \gamma (q)\left| {\bar{q}}(x) \Gamma _i G_{\mu \nu }q(0) \right| 0\rangle \) in terms of the photon DAs and wave functions of different twists [67],

$$\begin{aligned}&\langle \gamma (q) \vert {{\bar{q}}}(x) \gamma _\mu q(0) \vert 0 \rangle = e_q f_{3 \gamma } \left( \varepsilon _\mu - q_\mu \frac{\varepsilon x}{q x} \right) \int _0^1 du e^{i {{\bar{u}}} q x} \psi ^v(u) \\&\quad \langle \gamma (q) \vert {{\bar{q}}}(x) \gamma _\mu \gamma _5 q(0) \vert 0 \rangle = - \frac{1}{4} e_q f_{3 \gamma } \epsilon _{\mu \nu \alpha \beta } \varepsilon ^\nu q^\alpha x^\beta \int _0^1 du e^{i {{\bar{u}}} q x} \psi ^a(u) \\&\quad \langle \gamma (q) \vert {{\bar{q}}}(x) \sigma _{\mu \nu } q(0) \vert 0 \rangle = -i e_q \langle {{\bar{q}}} q \rangle (\varepsilon _\mu q_\nu - \varepsilon _\nu q_\mu ) \int _0^1 du e^{i {{\bar{u}}} qx} \left( \chi \varphi _\gamma (u) + \frac{x^2}{16} {\mathbb {A}} (u) \right) \\&\qquad -\frac{i}{2(qx)} e_q {{\bar{q}}}q \left[ x_\nu \left( \varepsilon _\mu - q_\mu \frac{\varepsilon x}{qx}\right) - x_\mu \left( \varepsilon _\nu - q_\nu \frac{\varepsilon x}{q x}\right) \right] \int _0^1 du e^{i \bar{u} q x} h_\gamma (u) \\&\quad \langle \gamma (q) | {{\bar{q}}}(x) g_s G_{\mu \nu } (v x) q(0) \vert 0 \rangle = -i e_q \langle {{\bar{q}}} q \rangle \left( \varepsilon _\mu q_\nu - \varepsilon _\nu q_\mu \right) \int {{{\mathcal {D}}}}\alpha _i e^{i (\alpha _{{{\bar{q}}}} + v \alpha _g) q x} {{{\mathcal {S}}}}(\alpha _i) \\&\quad \langle \gamma (q) | {{\bar{q}}}(x) g_s {{\tilde{G}}}_{\mu \nu }(v x) i \gamma _5 q(0) \vert 0 \rangle = -i e_q \langle {{\bar{q}}} q \rangle \left( \varepsilon _\mu q_\nu - \varepsilon _\nu q_\mu \right) \int {{{\mathcal {D}}}}\alpha _i e^{i (\alpha _{{{\bar{q}}}} + v \alpha _g) q x} \tilde{{{\mathcal {S}}}}(\alpha _i) \\&\quad \langle \gamma (q) \vert {{\bar{q}}}(x) g_s {{\tilde{G}}}_{\mu \nu }(v x) \gamma _\alpha \gamma _5 q(0) \vert 0 \rangle = e_q f_{3 \gamma } q_\alpha (\varepsilon _\mu q_\nu - \varepsilon _\nu q_\mu ) \int \mathcal{D}\alpha _i e^{i (\alpha _{{{\bar{q}}}} + v \alpha _g) q x} \mathcal{A}(\alpha _i) \\&\quad \langle \gamma (q) \vert {{\bar{q}}}(x) g_s G_{\mu \nu }(v x) i \gamma _\alpha q(0) \vert 0 \rangle = e_q f_{3 \gamma } q_\alpha (\varepsilon _\mu q_\nu - \varepsilon _\nu q_\mu ) \int \mathcal{D}\alpha _i e^{i (\alpha _{{{\bar{q}}}} + v \alpha _g) q x} \mathcal{V}(\alpha _i) \\&\quad \langle \gamma (q) \vert {{\bar{q}}}(x) \sigma _{\alpha \beta } g_s G_{\mu \nu }(v x) q(0) \vert 0 \rangle \\&\qquad = e_q \langle {{\bar{q}}} q \rangle \left\{ \left[ \left( \varepsilon _\mu - q_\mu \frac{\varepsilon x}{q x}\right) \left( g_{\alpha \nu } - \frac{1}{qx} (q_\alpha x_\nu + q_\nu x_\alpha )\right) \right. \right. q_\beta \\&\qquad - \left( \varepsilon _\mu - q_\mu \frac{\varepsilon x}{q x}\right) \left( g_{\beta \nu } - \frac{1}{qx} (q_\beta x_\nu + q_\nu x_\beta )\right) q_\alpha - \left( \varepsilon _\nu - q_\nu \frac{\varepsilon x}{q x}\right) \left( g_{\alpha \mu }\right. \\&\qquad \left. - \frac{1}{qx} (q_\alpha x_\mu + q_\mu x_\alpha )\right) q_\beta \\&\qquad + \left. \left( \varepsilon _\nu - q_\nu \frac{\varepsilon x}{q.x}\right) \left( g_{\beta \mu } - \frac{1}{qx} (q_\beta x_\mu + q_\mu x_\beta )\right) q_\alpha \right] \int {{{\mathcal {D}}}}\alpha _i e^{i (\alpha _{{{\bar{q}}}} + v \alpha _g) qx} {{{\mathcal {T}}}}_1(\alpha _i) \\&\qquad + \left[ \left( \varepsilon _\alpha - q_\alpha \frac{\varepsilon x}{qx}\right) \left( g_{\mu \beta } - \frac{1}{qx}(q_\mu x_\beta + q_\beta x_\mu )\right) \right. q_\nu \\&\qquad - \left( \varepsilon _\alpha - q_\alpha \frac{\varepsilon x}{qx}\right) \left( g_{\nu \beta } - \frac{1}{qx}(q_\nu x_\beta + q_\beta x_\nu )\right) q_\mu \\&\qquad - \left( \varepsilon _\beta - q_\beta \frac{\varepsilon x}{qx}\right) \left( g_{\mu \alpha } - \frac{1}{qx}(q_\mu x_\alpha + q_\alpha x_\mu )\right) q_\nu \\&\qquad + \left. \left( \varepsilon _\beta - q_\beta \frac{\varepsilon x}{qx}\right) \left( g_{\nu \alpha } - \frac{1}{qx}(q_\nu x_\alpha + q_\alpha x_\nu ) \right) q_\mu \right] \int {{{\mathcal {D}}}} \alpha _i e^{i (\alpha _{{{\bar{q}}}} + v \alpha _g) qx} {{{\mathcal {T}}}}_2(\alpha _i) \\&\qquad +\frac{1}{qx} (q_\mu x_\nu - q_\nu x_\mu ) (\varepsilon _\alpha q_\beta - \varepsilon _\beta q_\alpha ) \int {{{\mathcal {D}}}} \alpha _i e^{i (\alpha _{{{\bar{q}}}} + v \alpha _g) qx} {{{\mathcal {T}}}}_3(\alpha _i) \\&\qquad + \left. \frac{1}{qx} (q_\alpha x_\beta - q_\beta x_\alpha ) (\varepsilon _\mu q_\nu - \varepsilon _\nu q_\mu ) \int {{{\mathcal {D}}}} \alpha _i e^{i (\alpha _{{{\bar{q}}}} + v \alpha _g) qx} {{{\mathcal {T}}}}_4(\alpha _i) \right\} ~, \end{aligned}$$

where \(\varphi _\gamma (u)\) is the distribution amplitude of leading twist-2, \(\psi ^v(u)\), \(\psi ^a(u)\), \({{{\mathcal {A}}}}(\alpha _i)\) and \({{{\mathcal {V}}}}(\alpha _i)\), are the twist-3 amplitudes, and \(h_\gamma (u)\), \({\mathbb {A}}(u)\), \({{{\mathcal {S}}}}(\alpha _i)\), \(\mathcal{{{{\tilde{S}}}}}(\alpha _i)\), \({{{\mathcal {T}}}}_1(\alpha _i)\), \({{{\mathcal {T}}}}_2(\alpha _i)\), \({{{\mathcal {T}}}}_3(\alpha _i)\) and \({{{\mathcal {T}}}}_4(\alpha _i)\) are the twist-4 photon DAs. The measure \({{{\mathcal {D}}}} \alpha _i\) is defined as

$$\begin{aligned} \int {{{\mathcal {D}}}} \alpha _i = \int _0^1 d \alpha _{{{\bar{q}}}} \int _0^1 d \alpha _q \int _0^1 d \alpha _g \delta (1-\alpha _{\bar{q}}-\alpha _q-\alpha _g)~. \end{aligned}$$

The expressions of the DAs entering into the above matrix elements are defined as:

$$\begin{aligned} \varphi _\gamma (u)= & {} 6 u {{\bar{u}}} \left( 1 + \varphi _2(\mu ) C_2^{\frac{3}{2}}(u - {{\bar{u}}}) \right) , \\ \psi ^v(u)= & {} 3 \left( 3 (2 u - 1)^2 -1 \right) +\frac{3}{64} \left( 15 w^V_\gamma - 5 w^A_\gamma \right) \left( 3 - 30 (2 u - 1)^2 + 35 (2 u -1)^4 \right) , \\ \psi ^a(u)= & {} \left( 1- (2 u -1)^2\right) \left( 5 (2 u -1)^2 -1\right) \frac{5}{2} \left( 1 + \frac{9}{16} w^V_\gamma - \frac{3}{16} w^A_\gamma \right) , \\ h_\gamma (u)= & {} - 10 \left( 1 + 2 \kappa ^+\right) C_2^{\frac{1}{2}}(u - {{\bar{u}}}), \\ {\mathbb {A}}(u)= & {} 40 u^2 {{\bar{u}}}^2 \left( 3 \kappa - \kappa ^+ +1\right) + 8 (\zeta _2^+ - 3 \zeta _2) \left[ u {{\bar{u}}} (2 + 13 u {{\bar{u}}}) \right. \\&+ \left. 2 u^3 (10 -15 u + 6 u^2) \ln (u) + 2 {{\bar{u}}}^3 (10 - 15 {{\bar{u}}} + 6 {{\bar{u}}}^2) \ln ({{\bar{u}}}) \right] , \\ {{{\mathcal {A}}}}(\alpha _i)= & {} 360 \alpha _q \alpha _{{{\bar{q}}}} \alpha _g^2 \left( 1 + w^A_\gamma \frac{1}{2} (7 \alpha _g - 3)\right) , \\ {{{\mathcal {V}}}}(\alpha _i)= & {} 540 w^V_\gamma (\alpha _q - \alpha _{{{\bar{q}}}}) \alpha _q \alpha _{{{\bar{q}}}} \alpha _g^2, \\ {{{\mathcal {T}}}}_1(\alpha _i)= & {} -120 (3 \zeta _2 + \zeta _2^+)(\alpha _{\bar{q}} - \alpha _q) \alpha _{{{\bar{q}}}} \alpha _q \alpha _g, \\ {{{\mathcal {T}}}}_2(\alpha _i)= & {} 30 \alpha _g^2 (\alpha _{{{\bar{q}}}} - \alpha _q) \left( (\kappa - \kappa ^+) + (\zeta _1 - \zeta _1^+)(1 - 2\alpha _g) + \zeta _2 (3 - 4 \alpha _g)\right) , \\ {{{\mathcal {T}}}}_3(\alpha _i)= & {} - 120 (3 \zeta _2 - \zeta _2^+)(\alpha _{\bar{q}} -\alpha _q) \alpha _{{{\bar{q}}}} \alpha _q \alpha _g, \\ {{{\mathcal {T}}}}_4(\alpha _i)= & {} 30 \alpha _g^2 (\alpha _{{{\bar{q}}}} - \alpha _q) \left( (\kappa + \kappa ^+) + (\zeta _1 + \zeta _1^+)(1 - 2\alpha _g) + \zeta _2 (3 - 4 \alpha _g)\right) , \\ {{{\mathcal {S}}}}(\alpha _i)= & {} 30\alpha _g^2\{(\kappa + \kappa ^+)(1-\alpha _g)+(\zeta _1 + \zeta _1^+)(1 - \alpha _g)(1 - 2\alpha _g) \\&+\zeta _2[3 (\alpha _{{{\bar{q}}}} - \alpha _q)^2-\alpha _g(1 - \alpha _g)]\}, \\ \tilde{{{\mathcal {S}}}}(\alpha _i)= & {} -30\alpha _g^2\{(\kappa -\kappa ^+)(1-\alpha _g)+(\zeta _1 - \zeta _1^+)(1 - \alpha _g)(1 - 2\alpha _g) \\&+\zeta _2 [3 (\alpha _{{{\bar{q}}}} -\alpha _q)^2-\alpha _g(1 - \alpha _g)]\}. \end{aligned}$$

Numerical values of parameters used in distribution amplitudes are: \(\varphi _2(1~GeV) = 0\), \(w^V_\gamma = 3.8 \pm 1.8\), \(w^A_\gamma = -2.1 \pm 1.0\), \(\kappa = 0.2\), \(\kappa ^+ = 0\), \(\zeta _1 = 0.4\), \(\zeta _2 = 0.3\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdem, U., Azizi, K. Magnetic dipole moment of the \(Z_{cs}(3985)\) state: diquark–antidiquark and molecular pictures. Eur. Phys. J. Plus 136, 968 (2021). https://doi.org/10.1140/epjp/s13360-021-01977-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01977-w

Navigation