Skip to main content
Log in

The generalized complex Ginzburg–Landau model and its dark and bright soliton solutions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In the present work, the generalized complex Ginzburg–Landau (GCGL) model is considered and its 1-soliton solutions involving different wave structures are retrieved through a series of newly well-organized methods. More exactly, after considering the GCGL model, its 1-soliton solutions are obtained using the exponential and Kudryashov methods in the presence of perturbation effects. As a case study, the effect of various parameter regimes on the dynamics of the dark and bright soliton solutions is analyzed in three- and two-dimensional postures. The validity of all the exact solutions presented in this study has been examined successfully through the use of the symbolic computation system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.A. Malomed, A.A. Nepomnyashchy, Kinks and solitons in the generalized Ginzburg–Landau equation. Phys. Rev. A 42, 6009 (1990)

    Article  ADS  Google Scholar 

  2. K. Staliunas, Laser Ginzburg–Landau equation and laser hydrodynamics. Phys. Rev. A 48, 1573 (1993)

    Article  ADS  Google Scholar 

  3. N. Akhmediev, A. Ankiewicz, Solitons of the Complex Ginzburg–Landau Equation, in Spatial Solitons Springer Series in Optical Sciences, vol. 82, ed. by S. Trillo, W. Torruellas (Springer, Berlin, 2001)

    Google Scholar 

  4. N. Akhmediev, J.M. Soto-Crespo, G. Town, Pulsating solitons chaotic solitons period doubling and pulse co-existence in mode-locked lasers: Complex Ginzburg Landau equation approach. Phys. Rev. E 63, 056602 (2001)

    Article  ADS  Google Scholar 

  5. B.A. Malomed, Bound solitons in the nonlinear Schrödinger/Ginzburg–Landau equation. Phys. Rev. A 44, 6954 (2005)

    Article  ADS  Google Scholar 

  6. S. Shwetanshumala, Temporal solitons of modified complex Ginzberg Landau equation. Progress Electromagnet. Res. Lett. 3, 17–24 (2008)

    Article  Google Scholar 

  7. S. Yao, E. Ilhan, P. Veeresha, H.M. Baskonus, A powerful iterative approach for quintic complex Ginzburg–Landau equation within the frame of fractional operator. Fractals 29, 2140023 (2021)

    Article  Google Scholar 

  8. M. Mirzazadeh, M. Ekici, A. Sonmezoglu, M. Eslami, Q. Zhou, A.H. Kara, D. Milovic, F.B. Majid, A. Biswas, M. Belic, Optical solitons with complex Ginzburg–Landau equation. Nonlinear Dyn. 85, 197–201 (2016)

    MathSciNet  MATH  Google Scholar 

  9. A.H. Arnous, A.R. Seadawy, R.T. Alqahtani, A. Biswas, Optical solitons with complex Ginzburg–Landau equation by modified simple equation method. Optik 144, 475–480 (2017)

    Article  ADS  Google Scholar 

  10. M.A. Abdou, A.A. Soliman, A. Biswas, M. Ekici, Q. Zhou, S.P. Moshokoa, Dark-singular combo optical solitons with fractional complex Ginzburg–Landau equation. Optik 171, 463–467 (2018)

    Article  ADS  Google Scholar 

  11. S. Arshed, Soliton solutions of fractional complex Ginzburg–Landau equation with Kerr law and non-Kerr law media. Optik 160, 322–332 (2018)

    Article  ADS  Google Scholar 

  12. H. Rezazadeh, New solitons solutions of the complex Ginzburg–Landau equation with Kerr law nonlinearity. Optik 167, 218–227 (2018)

    Article  ADS  Google Scholar 

  13. M. Inc, A.I. Aliyu, A. Yusuf, D. Baleanu, Optical solitons for complex Ginzburg–Landau model in nonlinear optics. Optik 158, 368–375 (2018)

    Article  ADS  Google Scholar 

  14. M.S. Osman, B. Ghanbari, J.A.T. Machado, New complex waves in nonlinear optics based on the complex Ginzburg–Landau equation with Kerr law nonlinearity. Eur. Phys. J. Plus 134, 20 (2019)

    Article  Google Scholar 

  15. M.S. Osman, D. Lu, M.M.A. Khater, R.A.M. Attia, Complex wave structures for abundant solutions related to the complex Ginzburg–Landau model. Optik 192, 162927 (2019)

    Article  ADS  Google Scholar 

  16. K. Hosseini, M. Mirzazadeh, M.S. Osman, M. Al Qurashi, D. Baleanu, Solitons and Jacobi elliptic function solutions to the complex Ginzburg–Landau equation. Frontiers Phys. 8, 225 (2020)

    Article  ADS  Google Scholar 

  17. E.M.E. Zayed, M.E.M. Alngar, M. El-Horbaty, A. Biswas, A.S. Alshomrani, M. Ekici, Y. Yıldırım, M.R. Belic, Optical solitons with complex Ginzburg–Landau equation having a plethora of nonlinear forms with a couple of improved integration norms. Optik 207, 163804 (2020)

    Article  ADS  Google Scholar 

  18. Y. Liu, S. Chen, L. Wei, B. Guan, Exact solutions to complex Ginzburg–Landau equation. Pramana J. Phys. 91, 29 (2018)

    Article  ADS  Google Scholar 

  19. T.A. Sulaiman, H.M. Baskonus, H. Bulut, Optical solitons and other solutions to the conformable space-time fractional complex Ginzburg–Landau equation under Kerr law nonlinearity. Pramana J. Phys. 91, 58 (2018)

    Article  ADS  Google Scholar 

  20. J.H. He, X.H. Wu, Exp-function method for nonlinear wave equations. Chaos Solitons Fractals 30, 700–708 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. A.T. Ali, E.R. Hassan, General expa function method for nonlinear evolution equations. Appl. Math. Comput. 217, 451–459 (2010)

    MathSciNet  MATH  Google Scholar 

  22. K. Hosseini, M.S. Osman, M. Mirzazadeh, F. Rabiei, Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation. Optik 206, 164259 (2020)

    Article  ADS  Google Scholar 

  23. K. Hosseini, M. Mirzazadeh, F. Rabiei, H.M. Baskonus, G. Yel, Dark optical solitons to the Biswas–Arshed equation with high order dispersions and absence of self-phase modulation. Optik 209, 164576 (2020)

    Article  ADS  Google Scholar 

  24. K. Hosseini, M. Mirzazadeh, J. Vahidi, R. Asghari, Optical wave structures to the Fokas–Lenells equation. Optik 207, 164450 (2020)

    Article  ADS  Google Scholar 

  25. N.A. Kudryashov, Method for finding highly dispersive optical solitons of nonlinear differential equation. Optik 206, 163550 (2020)

    Article  ADS  Google Scholar 

  26. N.A. Kudryashov, Highly dispersive solitary wave solutions of perturbed nonlinear Schrödinger equations. Appl. Math. Comput. 371, 124972 (2020)

    MathSciNet  MATH  Google Scholar 

  27. N.A. Kudryashov, Highly dispersive optical solitons of the generalized nonlinear eighth-order Schrödinger equation. Optik 206, 164335 (2020)

    Article  ADS  Google Scholar 

  28. K. Hosseini, M. Mirzazadeh, M. Ilie, S. Radmehr, Dynamics of optical solitons in the perturbed Gerdjikov–Ivanov equation. Optik 206, 164350 (2020)

    Article  ADS  Google Scholar 

  29. K. Hosseini, M. Mirzazadeh, M. Ilie, J.F. Gómez-Aguilar, Soliton solutions of the Sasa–Satsuma equation in the monomode optical fibers including the beta-derivatives. Optik 224, 165425 (2020)

    Article  ADS  Google Scholar 

  30. K. Hosseini, M. Mirzazadeh, M. Ilie, J.F. Gómez-Aguilar, Biswas–Arshed equation with the beta time derivative: optical solitons and other solutions. Optik 217, 164801 (2020)

    Article  ADS  Google Scholar 

  31. K. Hosseini, M. Matinfar, M. Mirzazadeh, Soliton solutions of high-order nonlinear Schrödinger equations with different laws of nonlinearities. Regul. Chaotic Dyn. 26, 105–112 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  32. K. Hosseini, S. Salahshour, M. Mirzazadeh, Bright and dark solitons of a weakly nonlocal Schrödinger equation involving the parabolic law nonlinearity. Optik 227, 166042 (2021)

    Article  ADS  Google Scholar 

  33. K. Hosseini, K. Sadri, M. Mirzazadeh, Y.M. Chu, A. Ahmadian, B.A. Pansera, S. Salahshour, A high-order nonlinear Schrödinger equation with the weak non-local nonlinearity and its optical solitons. Results Phys. 23, 104035 (2021)

    Article  Google Scholar 

  34. K. Hosseini, K. Sadri, M. Mirzazadeh, S. Salahshour, An integrable (2+1)-dimensional nonlinear Schrödinger system and its optical soliton solutions. Optik 229, 166247 (2021)

    Article  ADS  Google Scholar 

  35. H.C. Ma, Z.P. Zhang, A.P. Deng, A new periodic solution to Jacobi elliptic functions of MKdV equation and BBM equation. Acta Math. Appl. Sin. 28, 409–415 (2012)

    Article  MathSciNet  Google Scholar 

  36. K. Hosseini, S. Salahshour, M. Mirzazadeh, A. Ahmadian, D. Baleanu, A. Khoshrang, The (2+1)-dimensional Heisenberg ferromagnetic spin chain equation: Its solitons and Jacobi elliptic function solutions. Eur. Phys. J. Plus 136, 206 (2021)

    Article  Google Scholar 

  37. Y.M. Li, H.M. Baskonus, A.M. Khudhur, Investigations of the complex wave patterns to the generalized Calogero–Bogoyavlenskii–Schiff equation. Soft Comput. (2021). https://doi.org/10.1007/s00500-021-05627-2

    Article  Google Scholar 

  38. W. Gao, M. Senel, G. Yel, H.M. Baskonus, B. Senel, The complex wave patterns to the generalized Calogero–Bogoyavlenskii–Schiff equation. AIMS Math. 6, 4238–4264 (2021)

    Article  MathSciNet  Google Scholar 

  39. A. Jhangeer, H.M. Baskonus, G. Yel, W. Gao, New exact solitary wave solutions, bifurcation analysis and first order conserved quantities of resonance nonlinear Schrödinger’s equation with Kerr law nonlinearity. J. King Saud Univ. – Sci. 33, 101180 (2021)

    Article  Google Scholar 

  40. G. Yel, H.M. Baskonus, W. Gao, New dark-bright soliton in the shallow water wave model. AIMS Math. 5, 4027–4044 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Mirzazadeh or C. Park.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, K., Mirzazadeh, M., Baleanu, D. et al. The generalized complex Ginzburg–Landau model and its dark and bright soliton solutions. Eur. Phys. J. Plus 136, 709 (2021). https://doi.org/10.1140/epjp/s13360-021-01637-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01637-z

Navigation