Skip to main content
Log in

Neuro-intelligent networks for Bouc–Wen hysteresis model for piezostage actuator

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Piezoelectric stage has become promising actuator for wide applications of micro-/nano-positioning systems represented mathematically with Bouc–Wen hysteresis model to examine the efficiency. In this investigation, the numerical study of piezostage actuator based on nonlinear Bouc–Wen hysteresis model is presented by neurocomputing intelligence via Levenberg–Marquardt backpropagated neural networks (LMB-NNs). Numerical computing strength of Adams method is implemented to generate a dataset of LMB-NNs for training, testing and validation process based on different scenarios of input voltage signals to piezostage actuator model. The performance of LMB-NNs of nano-positioning system model is validated through accuracy measures on means square error, histogram illustrations and regression analysis.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

b :

Network bias

c :

Damping coefficient

d :

Output displacement

e :

Error between actual and desired outputs

\(f\) :

Nonlinear function

h :

Hysteresis response

\(I\) :

Identity matrix

\(J\) :

Jacobian matrix

k :

Stiffness coefficient

LMB:

Levenberg–Marquardt backpropagation

m :

Mass of sliding object

MSE:

Mean square error

N :

Hidden layers neurons

NN:

Neural networks

\(p\) :

Downhill step

Q :

Step interval

R :

Regression value

T :

Time variable

W :

Weight matrix

X :

Input voltage

Z :

Number of sample data points

α, β, γ :

Hysteresis loop shape control parameters

Δ :

Piezoelectric coefficient

\(\lambda\) :

Nonnegative scalars of identity matrix

References

  1. S. Shao, Y. Shao, S. Song, M. Xu, X. Ma, Structure and controller design of a piezo-driven orientation stage for space antenna pointing. Mech. Syst. Signal Process. 138, 106525 (2020)

    Article  Google Scholar 

  2. J. Jung, K. Huh, Simulation tool design for the two-axis nano stage of lithography systems. Mechatronics 20(5), 574–581 (2010)

    Article  Google Scholar 

  3. J. Joseph, S.G. Singh, S.R.K. Vanjari, Leveraging innate piezoelectricity of ultra-smooth silk thin films for flexible and wearable sensor applications. IEEE Sens. J. 17(24), 8306–8313 (2017)

    Article  ADS  Google Scholar 

  4. C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy Environ. Sci. 7(1), 25–44 (2014)

    Article  Google Scholar 

  5. C.H. Nguyen, U. Hanke, E. Halvorsen, Actuation of piezoelectric layered beams with $ d_ 31 $ and $ d_ 33 $ coupling. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(5), 815–827 (2018)

    Article  Google Scholar 

  6. B. Ghosh, R.K. Jain, S. Majumder, S.S. Roy, S. Mukhopadhyay, Experimental performance evaluation of smart bimorph piezoelectric actuator and its application in micro robotics. Microsyst. Technol. 23(10), 4619–4635 (2017)

    Article  Google Scholar 

  7. Y. Shan, K.K. Leang, Accounting for hysteresis in repetitive control design: nanopositioning example. Automatica 48(8), 1751–1758 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. G.Y. Gu, L.M. Zhu, C.Y. Su, Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl–Ishlinskii model. IEEE Trans. Industr. Electron. 61(3), 1583–1595 (2013)

    Article  Google Scholar 

  9. M.A. Krasnoselskii, A.V. Pokrovskii, Systems with Hysteresis (Springer, Berlin, 2012).

    Google Scholar 

  10. A. Visintin, Differential Models of Hysteresis, vol. 111 (Springer, Berlin, 2013).

    MATH  Google Scholar 

  11. C.J. Lin, P.T. Lin, Tracking control of a biaxial piezo-actuated positioning stage using generalized Duhem model. Comput. Math. Appl. 64(5), 766–787 (2012)

    Article  Google Scholar 

  12. R. Liu, X. Gao. Neural network identification and sliding mode control for hysteresis nonlinear system with backlash-like model. Complexity (2019).

  13. W. Zhu, X.T. Rui, Hysteresis modeling and displacement control of piezoelectric actuators with the frequency-dependent behavior using a generalized Bouc–Wen model. Precis. Eng. 43, 299–307 (2016)

    Article  Google Scholar 

  14. A. Esbrook, X. Tan, H.K. Khalil, Control of systems with hysteresis via servocompensation and its application to nanopositioning. IEEE Trans. Control Syst. Technol. 21(3), 725–738 (2012)

    Article  Google Scholar 

  15. W.S. Galinaitis. Two Methods for Modeling Scalar Hysteresis and Their Use in Controlling Actuators with Hysteresis. Doctoral dissertation, Virginia Tech (1999)

  16. H. Hu, R.B. Mrad, On the classical Preisach model for hysteresis in piezoceramic actuators. Mechatronics 13(2), 85–94 (2003)

    Article  Google Scholar 

  17. J. Chen, G. Peng, H. Hu, J. Ning, Dynamic hysteresis model and control methodology for force output using piezoelectric actuator driving. IEEE Access 8, 205136–205147 (2020)

    Article  Google Scholar 

  18. C. Napole, O. Barambones, I. Calvo, J. Velasco, Feedforward compensation analysis of piezoelectric actuators using artificial neural networks with conventional PID controller and single-neuron PID based on Hebb learning rules. Energies 13(15), 3929 (2020)

    Article  Google Scholar 

  19. P.Z. Li, D.F. Zhang, J.Y. Hu, B. Lennox, F. Arvin, Hysteresis modelling and feedforward control of piezoelectric actuator based on simplified interval Type-2 fuzzy system. Sensors 20(9), 2587 (2020)

    Article  Google Scholar 

  20. D. Meng, P. Xia, K. Lang, E.C. Smith, C.D. Rahn, Neural network based hysteresis compensation of piezoelectric stack actuator driven active control of helicopter vibration. Sensors Actuators A 302, 111809 (2020)

    Article  Google Scholar 

  21. Y. Qin, H. Duan, Single-Neuron adaptive hysteresis compensation of piezoelectric actuator based on hebb learning rules. Micromachines 11(1), 84 (2020)

    Article  Google Scholar 

  22. W. Li, C. Zhang, W. Gao, M. Zhou, Neural network self-tuning control for a piezoelectric actuator. Sensors 20(12), 3342 (2020)

    Article  Google Scholar 

  23. Y. Liu, H. Liu, H. Wu, D. Zou, Modelling and compensation of hysteresis in piezoelectric actuators based on Maxwell approach. Electron. Lett. 52(3), 188–190 (2016)

    Article  ADS  Google Scholar 

  24. W. Wang, F. Han, Z. Chen, R. Wang, C. Wang, K. Lu, J. Wang, B. Ju, Modeling and compensation for asymmetrical and dynamic hysteresis of piezoelectric actuators using a dynamic delay Prandtl–Ishlinskii model. Micromachines 12(1), 92 (2021)

    Article  Google Scholar 

  25. J. Lee, M. Jin, N. Kashiri, D.G. Caldwell, N.G. Tsagarakis, Inversion-free force tracking control of piezoelectric actuators using fast finite-time integral terminal sliding-mode. Mechatronics 57, 39–50 (2019)

    Article  Google Scholar 

  26. X. Zhao, S. Shen, L. Su, X. Yin, Elman neural network–based identification of rate-dependent hysteresis in piezoelectric actuators. J. Intell. Mater. Syst. Struct. 31(7), 980–989 (2020)

    Article  Google Scholar 

  27. C. Yang, N. Verbeek, F. Xia, Y. Wang, K. Youcef-Toumi, Modeling and control of piezoelectric hysteresis: a polynomial-based fractional order disturbance compensation approach. IEEE Trans. Ind. Electron. 68(4), 3348–3358 (2020)

    Article  Google Scholar 

  28. Y. Cao, J. Huang, Neural-network-based nonlinear model predictive tracking control of a pneumatic muscle actuator-driven exoskeleton. IEEE/CAA J. Autom. Sin. 7(6), 1478–1488 (2020)

    Article  MathSciNet  Google Scholar 

  29. S. Xie, J. Ren. Tracking Control Using Recurrent-Neural-Network-Based Inversion Model: A Case Study on a Piezo Actuator, in IEEE Transactions on Industrial Electronics (2020)

  30. C.J. Lin, P.T. Lin, Particle swarm optimization based feedforward controller for a XY PZT positioning stage. Mechatronics 22(5), 614–628 (2012)

    Article  Google Scholar 

  31. J. Oh, D.S. Bernstein, Piecewise linear identification for the rate-independent and rate-dependent Duhem hysteresis models. IEEE Trans. Autom. Control 52(3), 576–582 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. G.A. Ortiz, D.A. Alvarez, D. Bedoya-Ruíz, Identification of Bouc–Wen type models using the transitional Markov chain Monte Carlo method. Comput. Struct. 146, 252–269 (2015)

    Article  Google Scholar 

  33. G. Wang, K. Zhou, Y. Zhang, Parameter identification of piezoelectric hysteresis model based on improved artificial bee colony algorithm. Mod. Phys. Lett. B 32(11), 1850131 (2018)

    Article  ADS  Google Scholar 

  34. N.N. Son, C. Van Kien, H.P.H. Anh, Parameters identification of Bouc-Wen hysteresis model for piezoelectric actuators using hybrid adaptive differential evolution and Jaya algorithm. Eng. Appl. Artif. Intell. 87, 103317 (2020)

    Article  Google Scholar 

  35. M.A.Z. Raja, I. Ahmad, I. Khan, M.I. Syam, A.M. Wazwaz, Neuro-heuristic computational intelligence for solving nonlinear pantograph systems. Front. Inf. Technol. Electron. Eng. 18(4), 464–484 (2017)

    Article  Google Scholar 

  36. B. Sun, Y. Cao, Z. Guo, Z. Yan, S. Wen, Synchronization of discrete-time recurrent neural networks with time-varying delays via quantized sliding mode control. Appl. Math. Comput. 375, 125093 (2020)

    MathSciNet  Google Scholar 

  37. I. Ahmad et al., Neuro-evolutionary computing paradigm for Painlevé equation-II in nonlinear optics. Eur. Phys. J. Plus 133(5), 184 (2018)

    Article  Google Scholar 

  38. A. Siraj-ul-Islam et al., Design of cascade artificial neural networks optimized with the memetic computing paradigm for solving the nonlinear Bratu system. Eur. Phys. J. Plus 134(3), 1–13 (2019)

    Google Scholar 

  39. Z. Masood et al., Design of Mexican Hat Wavelet neural networks for solving Bratu type nonlinear systems. Neurocomputing 221, 1–14 (2017)

    Article  Google Scholar 

  40. I. Ahmad et al., Novel applications of intelligent computing paradigms for the analysis of nonlinear reactive transport model of the fluid in soft tissues and microvessels. Neural Comput. Appl. 31(12), 9041–9059 (2019)

    Article  Google Scholar 

  41. J.A. Khan et al., Design and application of nature inspired computing approach for nonlinear stiff oscillatory problems. Neural Comput. Appl. 26(7), 1763–1780 (2015)

    Article  Google Scholar 

  42. M.A.Z. Raja, F.H. Shah, M.I. Syam, Intelligent computing approach to solve the nonlinear Van der Pol system for heartbeat model. Neural Comput. Appl. 30(12), 3651–3675 (2018)

    Article  Google Scholar 

  43. A. Mehmood et al., Design of neuro-computing paradigms for nonlinear nanofluidic systems of MHD Jeffery-Hamel flow. J. Taiwan Inst. Chem. Eng. 91, 57–85 (2018)

    Article  Google Scholar 

  44. A. Ara et al., Numerical simulation for Jeffery-Hamel flow and heat transfer of micropolar fluid based on differential evolution algorithm. AIP Adv. 8(1), 015201 (2018)

    Article  ADS  Google Scholar 

  45. M.A.Z. Raja, F.H. Shah, A.A. Khan, N.A. Khan, Design of bio-inspired computational intelligence technique for solving steady thin film flow of Johnson–Segalman fluid on vertical cylinder for drainage problems. J. Taiwan Inst. Chem. Eng. 60, 59–75 (2016)

    Article  Google Scholar 

  46. M.A.Z. Raja, J.A. Khan, T. Haroon, Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. J. Taiwan Inst. Chem. Eng. 48, 26–39 (2015)

    Article  Google Scholar 

  47. M.A.Z. Raja, Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connect. Sci. 26(3), 195–214 (2014)

    Article  ADS  Google Scholar 

  48. A. Mehmood et al., Integrated computational intelligent paradigm for nonlinear electric circuit models using neural networks, genetic algorithms and sequential quadratic programming. Neural Comput. Appl. 32(14), 10337–10357 (2020)

    Article  Google Scholar 

  49. A. Mehmood et al., Design of nature-inspired heuristic paradigm for systems in nonlinear electrical circuits. Neural Comput. Appl. 32(11), 7121–7137 (2020)

    Article  Google Scholar 

  50. Z. Sabir et al., Novel design of Morlet wavelet neural network for solving second order Lane-Emden equation. Math. Comput. Simul. 172, 1–14 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  51. M.A.Z. Raja, U. Farooq, N.I. Chaudhary, A.M. Wazwaz, Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes. Appl. Soft Comput. 38, 561–586 (2016)

    Article  Google Scholar 

  52. M.A.Z. Raja, F.H. Shah, E.S. Alaidarous, M.I. Syam, Design of bio-inspired heuristic technique integrated with interior-point algorithm to analyze the dynamics of heartbeat model. Appl. Soft Comput. 52, 605–629 (2017)

    Article  Google Scholar 

  53. M.A.Z. Raja, M.A. Manzar, F.H. Shah, F.H. Shah, Intelligent computing for Mathieu’s systems for parameter excitation, vertically driven pendulum and dusty plasma models. Appl. Soft Comput. 62, 359–372 (2018)

    Article  Google Scholar 

  54. M. Umar et al., Stochastic numerical technique for solving HIV infection model of CD4+ T cells. Eur. Phys. J. Plus 135(6), 403 (2020)

    Article  Google Scholar 

  55. Z. Sabir et al., Neuro-heuristics for nonlinear singular Thomas-Fermi systems. Appl. Soft Comput. 65, 152–169 (2018)

    Article  Google Scholar 

  56. F. Faisal et al., A new heuristic computational solver for nonlinear singular Thomas-Fermi system using evolutionary optimized cubic splines. Eur. Phys. J. Plus 135(1), 1–29 (2020)

    ADS  MathSciNet  Google Scholar 

  57. A. Zameer et al., Bio-inspired heuristics for layer thickness optimization in multilayer piezoelectric transducer for broadband structures. Soft. Comput. 23(10), 3449–3463 (2019)

    Article  Google Scholar 

  58. A. Zameer et al., Intelligent and robust prediction of short term wind power using genetic programming based ensemble of neural networks. Energy Convers. Manag. 134, 361–372 (2017)

    Article  Google Scholar 

  59. A.S. Qureshi, A. Khan, A. Zameer, A. Usman, Wind power prediction using deep neural network based meta regression and transfer learning. Appl. Soft Comput. 58, 742–755 (2017)

    Article  Google Scholar 

  60. Z. Chouhdry et al., Design of reduced search space strategy based on integration of Nelder-Mead method and pattern search algorithm with application to economic load dispatch problem. Neural Comput. Appl. 30(12), 3693–3705 (2018)

    Article  Google Scholar 

  61. A.H. Bukhari et al., Fractional neuro-sequential ARFIMA-LSTM for financial market forecasting. IEEE Access 8, 71326–71338 (2020)

    Article  Google Scholar 

  62. A. Ara et al., Wavelets optimization method for evaluation of fractional partial differential equations: an application to financial modelling. Adv. Differ. Equ. 2018(1), 8 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  63. M.A.Z. Raja, M.A. Manzar, R. Samar, An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Appl. Math. Model. 39(10–11), 3075–3093 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  64. S. Lodhi et al., Fractional neural network models for nonlinear Riccati systems. Neural Comput. Appl. 31(1), 359–378 (2019)

    Article  Google Scholar 

  65. M.A.Z. Raja et al., Design of unsupervised fractional neural network model optimized with interior point algorithm for solving Bagley–Torvik equation. Math. Comput. Simul. 132, 139–158 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  66. R. Bouc. Forced vibrations of mechanical systems with hysteresis, in Proceedings of the Fourth Conference on Nonlinear Oscillations, Prague (1967).

  67. A. Mehmood et al., Novel computing paradigms for parameter estimation in Hammerstein controlled auto regressive auto regressive moving average systems. Appl. Soft Comput. 80, 263–284 (2019)

    Article  Google Scholar 

  68. J.M. Castellanos-Jaramillo, A. Castellanos-Moreno, A. Corella-Madueño, A finite Hopfield neural network model for the oxygenation of hemoglobin. Phys. Scr. 95(7), 075002 (2020)

    Article  ADS  Google Scholar 

  69. R.A. Mohamed, Modeling electrical properties of nanofluids using artificial neural network. Phys. Scr. 94(10), 105222 (2019)

    Article  ADS  Google Scholar 

  70. M. Umar et al., Intelligent computing for numerical treatment of nonlinear prey–predator models. Appl. Soft Comput. 80, 506–524 (2019)

    Article  Google Scholar 

  71. I. Jadoon et al., Integrated meta-heuristics finite difference method for the dynamics of nonlinear unipolar electrohydrodynamic pump flow model. Appl. Soft Comput. 97, 106791 (2020)

    Article  Google Scholar 

  72. C. Liu, Z. Li, W. Hu, L. Xing, H. Peng, Range and dose verification in proton therapy using proton-induced positron emitters and recurrent neural networks (RNNs). Phys. Med. Biol. 64(17), 175009 (2019)

    Article  Google Scholar 

  73. B.J. Wolf, S. Warmelink, S.M. van Netten, Recurrent neural networks for hydrodynamic imaging using a 2D-sensitive artificial lateral line. Bioinspir. Biomim. 14(5), 055001 (2019)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Ethics declarations

Conflict of interest

All the authors of the manuscript declared that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naz, S., Raja, M.A.Z., Mehmood, A. et al. Neuro-intelligent networks for Bouc–Wen hysteresis model for piezostage actuator. Eur. Phys. J. Plus 136, 396 (2021). https://doi.org/10.1140/epjp/s13360-021-01382-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01382-3

Navigation