Skip to main content
Log in

Transverse dynamics of vector solitons in defocusing nonlocal media

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The transverse instability of line solitons of a multicomponent nonlocal defocusing nonlinear Schrödinger (NLS) system is utilized to construct lump and vortex-like structures in 2D nonlocal media, such as nematic liquid crystals. These line solitons are found by means of a perturbation expansion technique, which reduces the nonintegrable vector NLS model to a completely integrable scalar one, namely to a Kadomtsev–Petviashvili equation. It is shown that dark or antidark soliton stripes, as well as dark lumps, are possible depending on the strength of nonlocality: dark (antidark) solitons are formed for weaker (stronger) nonlocality, relatively to a threshold that is analytically determined in terms of the parameters of the system and the continuous-wave amplitude. Direct numerical simulations are used to show that dark lump-like- and vortex-like-structures can spontaneously be formed as a result of the transverse instability of the dark soliton stripes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.J. Ablowitz, Nonlinear Dispersive Waves: Asymptotic Analysis and Solitons (Cambridge University Press, Cambridge, 2011)

    MATH  Google Scholar 

  2. Y.S. Kivshar, G.P. Agrawal, Optical Solitons: From Fibers to Photonic Crystals (Academic Press, London, 2003)

    Google Scholar 

  3. A. Jeffrey, T. Kawahara, Asymptotic Methods in Nonlinear Wave Theory (Pitman, London, 1982)

    MATH  Google Scholar 

  4. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, Philadelphia, 1981)

    MATH  Google Scholar 

  5. R.M. Miura, Korteweg–de Vries equation and generalizations. I. A remarkable explicit non-linear transformation. J. Math. Phys. 9, 1202–1204 (1968)

    MATH  ADS  Google Scholar 

  6. V.E. Zakharov, E.A. Kuznetsov, Multi-scale expansions in the theory of systems integrable by the inverse scattering transform. Physica D 18, 455–463 (1986)

    MathSciNet  MATH  ADS  Google Scholar 

  7. T.P. Horikis, D.J. Frantzeskakis, On the NLS to KdV connection. Rom. J. Phys. 59, 195–203 (2014)

    Google Scholar 

  8. YuS Kivshar, B. Luther-Davies, Dark optical solitons: physics and applications. Phys. Rep. 298, 81–197 (1998)

    ADS  Google Scholar 

  9. D.J. Frantzeskakis, Dark solitons in Bose–Einstein condensates: from theory to experiments. J. Phys. A Math. Theor. 43, 213001 (2010)

    MathSciNet  MATH  ADS  Google Scholar 

  10. P.G. Kevrekidis, D.J. Frantzeskakis, R. Carretero-González, The Defocusing Nonlinear Schrödinger Equation: From Dark Solitons to Vortices and Vortex Rings (SIAM, Philadelphia, 2015)

    MATH  Google Scholar 

  11. A.G. Litvak, V.A. Mironov, G.M. Fraiman, A.D. Yunakovskii, Thermal self-effect of wave beams in a plasma with a nonlocal nonlinearity. Sov. J. Plasma Phys. 1, 60–71 (1975)

    Google Scholar 

  12. D. Suter, T. Blasberg, Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium. Phys. Rev. A 48, 4583–4587 (1993)

    ADS  Google Scholar 

  13. C. Rotschild, T. Carmon, O. Cohen, O. Manela, M. Segev, Solitons in nonlinear media with an infinite range of nonlocality: first observation of coherent elliptic solitons and of vortex-ring solitons. Phys. Rev. Lett. 95, 213904 (2005)

    ADS  Google Scholar 

  14. C. Conti, M. Peccianti, G. Assanto, Route to nonlocality and observation of accessible solitons. Phys. Rev. Lett. 91, 073901 (2003)

    ADS  Google Scholar 

  15. P. Pedri, L. Santos, Two-dimensional bright solitons in dipolar Bose–Einstein condensates. Phys. Rev. Lett. 95, 200404 (2005)

    ADS  Google Scholar 

  16. L. Arturo Urena-López, Brief review on scalar field dark matter models. Front. Astron. Space Sci. 6, 47 (2019)

    ADS  Google Scholar 

  17. T.B. Benjamin, J.E. Feir, The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27, 417–430 (1967)

    MATH  ADS  Google Scholar 

  18. M. Onorato, S. Residoric, U. Bortolozzo, A. Montina, F.T. Arecchi, Rogue waves and their generating mechanisms in different physical contexts. Phys. Rep. 528, 47–89 (2013)

    MathSciNet  ADS  Google Scholar 

  19. S.K. Turitsyn, Spatial dispersion of nonlinearity and stability of many dimensional solitons. Theor. Math. Phys. 64, 797–801 (1985)

    Google Scholar 

  20. W. Krolikowski, O. Bang, N.I. Nikolov, D. Neshev, J. Wyller, J.J. Rasmussen, D. Edmundson, Modulational instability, solitons and beam propagation in spatially nonlocal nonlinear media. J. Opt. B Quantum Semiclass. Opt. 6, S288–S294 (2004)

    ADS  Google Scholar 

  21. D. Mihalache, D. Mazilu, F. Lederer, B.A. Malomed, Y.V. Kartashov, L.-C. Crasovan, L. Torner, Three-dimensional spatiotemporal optical solitons in nonlocal nonlinear media. Phys. Rev. E 73, 025601(R) (2006)

    ADS  Google Scholar 

  22. D. Mihalache, Multidimensional solitons and vortices in nonlocal noninear optical media. Rom. Rep. Phys. 59, 515–522 (2007)

    Google Scholar 

  23. A. Dreischuh, D.N. Neshev, D.E. Petersen, O. Bang, W. Krolikowski, Observation of attraction between dark solitons. Phys. Rev. Lett. 96, 043901 (2006)

    ADS  Google Scholar 

  24. Y.V. Kartashov, L. Torner, Gray spatial solitons in nonlocal nonlinear media. Opt. Lett. 32, 946–948 (2007)

    ADS  Google Scholar 

  25. A. Piccardi, A. Alberucci, N. Tabiryan, G. Assanto, Dark nematicons. Opt. Lett. 36, 1356–1358 (2011)

    ADS  Google Scholar 

  26. T.P. Horikis, Small-amplitude defocusing nematicons. J. Phys. A Math. Theor. 48, 02FT01 (2015)

    MathSciNet  MATH  Google Scholar 

  27. E.A. Kuznetsov, S.K. Turitsyn, Instability and collapse of solitons in media with a defocusing nonlinearity. JETP 67, 1583–1588 (1988)

    MathSciNet  Google Scholar 

  28. D.E. Pelinovsky, YuA Stepanyants, YuS Kivshar, Self-focusing of plane dark solitons in nonlinear defocusing media. Phys. Rev. E 51, 5016–5026 (1995)

    MathSciNet  ADS  Google Scholar 

  29. YuS Kivshar, D.E. Pelinovsky, Self-focusing and transverse instabilities of solitary waves. Phys. Rep. 331, 117–195 (2000)

    MathSciNet  ADS  Google Scholar 

  30. A. Armaroli, S. Trillo, Suppression of transverse instabilities of dark solitons and their dispersive shock waves. Phys. Rev. A 80, 053803 (2009)

    ADS  Google Scholar 

  31. P.G. Kevrekidis, D.J. Frantzeskakis, Solitons in coupled nonlinear Schrödinger models: a survey of recent developments. Rev. Phys. 1, 140–153 (2016)

    Google Scholar 

  32. M.J. Ablowitz, B. Prinari, A.D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems (Cambridge University Press, Cambridge, 2004)

    MATH  Google Scholar 

  33. G. Assanto, N.F. Smyth, A.L. Worthy, Two-color, nonlocal vector solitary waves with angular momentum in nematic liquid crystals. Phys. Rev. A 78, 013832 (2008)

    ADS  Google Scholar 

  34. Z. Xu, N.F. Smyth, A.A. Minzoni, YuS Kivshar, Vector vortex solitons in nematic liquid crystals. Opt. Lett. 34, 1414–1416 (2009)

    ADS  Google Scholar 

  35. Y. Lin, R.-K. Lee, Dark-bright soliton pairs in nonlocal nonlinear media. Opt. Express 15, 8781 (2007)

    ADS  Google Scholar 

  36. W. Chen, Q. Kong, M. Shen, Q. Wang, J. Shi, Polarized vector dark solitons in nonlocal Kerr-type self-defocusing media. Phys. Rev. A 87, 013809 (2013)

    ADS  Google Scholar 

  37. T.P. Horikis, D.J. Frantzeskakis, Vector nematicons: coupled spatial solitons in nematic liquid crystals. Phys. Rev. A 94, 053805 (2016)

    ADS  Google Scholar 

  38. M.J. Ablowitz, P.A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge University Press, Cambridge, 1991)

    MATH  Google Scholar 

  39. V.I. Karpman, Non-linear Waves in Dispersive Media (Elsevier Science & Technology, Amsterdam, 1974)

    Google Scholar 

  40. E. Infeld, G. Rowlands, Nonlinear Waves, Solitons and Chaos (Cambridge University Press, Cambridge, 1990)

    MATH  Google Scholar 

  41. R.S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves (Cambridge University Press, Cambridge, 1997)

    MATH  Google Scholar 

  42. G. Assanto, Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals (Wiley-Blackwell, New Jersey, 2012)

    Google Scholar 

  43. G. Assanto, A.A. Minzoni, N.F. Smyth, Light self-localization in nematic liquid crystals: modelling solitons in nonlocal reorientational media. J. Nonlinear Opt. Phys. Mater. 18, 657–691 (2009)

    ADS  Google Scholar 

  44. A. Alberucci, M. Peccianti, G. Assanto, A. Dyadyusha, M. Kaczmarek, Two-color vector solitons in nonlocal media. Phys. Rev. Lett. 97, 153903 (2006)

    ADS  Google Scholar 

  45. G.N. Koutsokostas, T.P. Horikis, D.J. Frantzeskakis, B. Prinari, G. Biondini, Multiscale expansions and vector solitons of a two-dimensional nonlocal nonlinear Schrödinger system. Stud. Appl. Math. (2020) (under review)

  46. E. Infeld, A. Senatorski, A.A. Skorupski, Decay of Kadomtsev–Petviashvili solitons. Phys. Rev. Lett. 72, 1345–1347 (1994)

    ADS  Google Scholar 

  47. B.D. Skuse, N.F. Smyth, Interaction of two-color solitary waves in a liquid crystal in the nonlocal regime. Phys. Rev. A 79, 063806 (2009)

    ADS  Google Scholar 

  48. V.A. Mironov, A.I. Smirnov, L.A. Smirnov, Dynamics of vortex structure formation during the evolution of modulation instability of dark solitons. J. Exp. Theor. Phys. 112, 46–59 (2011)

    ADS  Google Scholar 

  49. A. Kassam, L.N. Trefethen, Fourth-order time stepping for stiff PDEs. SIAM J. Sci. Comput. 26, 1214–1233 (2005)

    MathSciNet  MATH  Google Scholar 

  50. T.P. Horikis, D.J. Frantzeskakis, Light meets water in nonlocal media: surface tension in optics. Phys. Rev. Lett. 118, 243903 (2017)

    ADS  Google Scholar 

  51. K.J.H. Law, P.G. Kevrekidis, L.S. Tuckerman, Stable vortex-bright-soliton structures in two-component Bose–Einstein condensates. Phys. Rev. Lett. 105, 160405 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Horikis.

Appendix: Derivation of the KP equation

Appendix: Derivation of the KP equation

Here, we provide details on the perturbation expansion and the derivation of the KP equation. First, Eq. (12a) yields:

$$\begin{aligned} O(\varepsilon ^{3/2})&: \quad -c\rho _{1X} + d_1 \rho _0 \phi _{1XX} =0, \end{aligned}$$
(33)
$$\begin{aligned} O(\varepsilon ^{5/2})&: \quad \rho _{1T}-c \rho _{2X}+d_1\left[ \left( \rho _1\phi _{1X}\right) _X +\rho _0\phi _{1YY}+\rho _0\phi _{2XX}\right] =0. \end{aligned}$$
(34)

From Eq. (12b), we obtain:

$$\begin{aligned} O(\varepsilon )&:\quad -c\phi _{1X}+2g_1\theta _1=0, \end{aligned}$$
(35)
$$\begin{aligned} O(\varepsilon ^2)&:\quad \phi _{1T}-c\phi _{2X}+2g_1\theta _2+\frac{d_1}{2} \left( \phi _{1X}^2-\frac{1}{2\rho _0}\rho _{1XX}\right) =0. \end{aligned}$$
(36)

Equation (12c) yields:

$$\begin{aligned} O(\varepsilon ^{3/2})&: \quad -c\sigma _{1X} + d_2 \sigma _0 \psi _{1XX} =0, \end{aligned}$$
(37)
$$\begin{aligned} O(\varepsilon ^{5/2})&: \quad \sigma _{1T}-c \sigma _{2X}+d_2\left[ \left( \sigma _1\psi _{1X}\right) _X +\sigma _0\phi _{1YY}+\sigma _0\psi _{2XX}\right] =0. \end{aligned}$$
(38)

From Eq. (12d), we obtain:

$$\begin{aligned} O(\varepsilon )&:\quad -c\psi _{1X}+2g_2\theta _1=0, \end{aligned}$$
(39)
$$\begin{aligned} O(\varepsilon ^2)&:\quad \psi _{1T}-c\psi _{2X}+2g_2\theta _2+\frac{d_2}{2} \left( \psi _{1X}^2-\frac{1}{2\sigma _0}\sigma _{1XX}\right) =0, \end{aligned}$$
(40)

and, finally, Eq. (12e) leads to:

$$\begin{aligned} O(\varepsilon )&:\quad -q\theta _1+g_1\rho _1+g_2\sigma _1=0, \end{aligned}$$
(41)
$$\begin{aligned} O(\varepsilon ^2)&:\quad \nu \theta _{1XX}-2q\theta _2+2(g_1\rho _2+g_2\sigma _2)=0. \end{aligned}$$
(42)

We consider the linear equations (33), (35), (37), (39) and (41). This system can be simplified as follows: differentiate Eqs. (35) and (39) with respect to X, and substitute \(\theta _1\) from Eq. (41), \(\phi _{1XX}\) from Eq. (33) and \(\psi _{1XX}\) from Eq. (37). This yields the following two equations:

$$\begin{aligned}&\left( -\frac{c^2}{d_1\rho _0}+\frac{2g_1^2}{q} \right) \rho _{1X}+ \frac{2g_1g_2}{q}\sigma _{1X}=0, \end{aligned}$$
(43)
$$\begin{aligned}&\frac{2g_1g_2}{q}\rho _{1X} + \left( -\frac{c^2}{d_2\sigma _0}+\frac{2g_2^2}{q} \right) \sigma _{1X}=0. \end{aligned}$$
(44)

The above system for the unknown functions \(\rho _{1X}\) and \(\sigma _{1X}\) has nontrivial solutions as long as the determinant of the coefficients is equal to zero. This requirement leads to the speed of sound, given in Eq. (15).

Next, we proceed with the equations at the next order of approximation, namely with Eqs. (34), (36), (38), (40) and (42). First, multiply (36) by \(\frac{d_1\rho _0}{c}\) and (40) by \(\frac{d_2\sigma _0}{c}\), respectively, and differentiate them with respect to X. Then, adding the resulting equations with (34) and (38), respectively, we obtain the following system of equations:

$$\begin{aligned}&-c\rho _{2X}+ \rho _{1T}+ d_1(\rho _1\phi _{1X})_{X}+d_1\rho _0\phi _{1YY} +\frac{d_1\rho _0}{c}\phi _{1TX}+\frac{2d_1g_1\rho _0}{c}\theta _{2X}\nonumber \\&\quad +\,\frac{d_1^2\rho _0}{2c}(\phi _{1X})^2_{X}-\frac{d_1^2}{4c}\rho _{1XXX}=0, \end{aligned}$$
(45)
$$\begin{aligned}&-\,c\sigma _{2X}+ \sigma _{1T}+ d_2(\sigma _1\psi _{1X})_{X}+d_2\sigma _0\psi _{1YY} +\frac{d_2\sigma _0}{c}\psi _{1TX}+\frac{2d_2g_2\sigma _0}{c}\theta _{2X}\nonumber \\&\quad +\,\frac{d_2^2\sigma _0}{2c}(\psi _{1X})^2_{X}-\frac{d_2^2}{4c}\sigma _{1XXX}=0, \end{aligned}$$
(46)
$$\begin{aligned}&\nu \theta _{1XX}-2q\theta _2+2(g_1\rho _2+g_2\sigma _2)=0. \end{aligned}$$
(47)

This system can be further simplified as follows. Multiply Eqs. (45) and (46) by \(-\frac{g_1}{qc}\) and \(-\frac{g_2}{qc}\), respectively, and add the resulting equations. Then, substituting \(\theta _2\) from Eq. (47), and using Eqs. (33), (37) and (43), we derive the KP equation (19).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koutsokostas, G.N., Horikis, T.P., Frantzeskakis, D.J. et al. Transverse dynamics of vector solitons in defocusing nonlocal media. Eur. Phys. J. Plus 135, 546 (2020). https://doi.org/10.1140/epjp/s13360-020-00544-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-020-00544-z

Navigation