Skip to main content
Log in

An algorithm to generate anisotropic rotating fluids with vanishing viscosity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Starting with generic stationary axially symmetric spacetimes depending on two spacelike isotropic orthogonal coordinates x1, x2, we build anisotropic fluids with and without heat flow but with wanishing viscosity. In the first part of the paper, after applying the transformation \(x^{1}\rightarrow J(x^{1})\), \( x^{2}\rightarrow F(x^{2})\) (with \( J(x^{1}), F(x^{2})\) regular functions) to general metrics coefficients \( g_{ab}(x^{1},x^{2}) \rightarrow g_{ab}(J(x^{1}), F(x^{2}))\) with \( G_{x^{1} x^{2}}=0\), being \( G_{ab}\) the Einstein’s tensor, we obtain that \( \tilde{G}_{x^{1} x^{2}}=0\rightarrow G_{x^{1} x^{2}}(J(x^{1}),F(x^{2}))=0\). Therefore, the transformed spacetime is endowed with an energy-momentum tensor \( T_{ab}\) with expression \( g_{ab}Q_{i}+\)heat term (where \( g_{ab}\) is the metric and \( \{Q_{i}\}\), \( i=1\ldots 4\) are functions depending on the physical parameters of the fluid), i.e. without viscosity and generally with a non-vanishing heat flow. We show that after introducing suitable coordinates, we can obtain interior solutions that can be matched to the Kerr one on spheroids or Cassinian ovals, providing the necessary mathematical machinery. In the second part of the paper we study the equation involving the heat flow and thus we generate anisotropic solutions with vanishing heat flow. In this frame, a class of asymptotically flat solutions with vanishing heat flow and viscosity can be obtained. Finally, some explicit solutions are presented with possible applications to a string with anisotropic source and a dark energy-like equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Neugebauer, Astrophys. J. 414, L97 (1993)

    Article  ADS  Google Scholar 

  2. G. Neugebauer, R. Meunel, Phys. Rev. Lett. 73, 2166 (1994)

    Article  ADS  Google Scholar 

  3. G. Neugebauer, A. Kleinwachter, R. Meinel, Helv. Phys. Acta 69, 472 (1996)

    ADS  Google Scholar 

  4. B.K. Harrison, J. Math. Phys. 9, 1744 (1968)

    Article  ADS  Google Scholar 

  5. R. Geroch, J. Math. Phys. 12, 918 (1971)

    Article  MathSciNet  ADS  Google Scholar 

  6. R. Geroch, J. Math. Phys. 13, 394 (1972)

    Article  ADS  Google Scholar 

  7. W. Kimmersley, J. Math. Phys. 14, 651 (1973)

    Article  ADS  Google Scholar 

  8. H. Hernandez, L.A. Nunez, U. Percoco, Class Quantum Grav. 16, 871 (1999)

    Article  ADS  Google Scholar 

  9. E.N. Glass, J.P. Krisch, Phys. Rev. D 57, R5945 (1998)

    Article  ADS  Google Scholar 

  10. P.S. Letelier, Phys. Rev. D 22, 807 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  11. J.P. Krisch, E.N. Glass, J. Math. Phys. 43, 1509 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  12. J.M.M. Senovilla, Class. Quantum Grav. 4, L 115 (1987)

    Article  ADS  Google Scholar 

  13. M.D. Wahlquist, Phys. Rev. 172, 1291 (1968)

    Article  ADS  Google Scholar 

  14. J. Winicour, J. Math. Phys. 16, 1805 (1975)

    Article  ADS  Google Scholar 

  15. V. Stockum, Proc. R. Soc. Edinb. 57, 135 (1937)

    Article  Google Scholar 

  16. W.B. Bonnor, J. Phys. A: Math. Gen. 10, 1673 (1977)

    Article  ADS  Google Scholar 

  17. D. Vogt, P.S. Letelier, Phys. Rev. D 76, 084010 (2007)

    Article  ADS  Google Scholar 

  18. M. Gurses, F. Gursey, J. Math. Phys. 16, 2385 (1975)

    Article  ADS  Google Scholar 

  19. L. Herrera, L. Jimenez, J. Math. Phys. 23, 2339 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  20. E.T. Newman, A. Janis, J. Math. Phys. 6, 915 (1965)

    Article  ADS  Google Scholar 

  21. T. Papakostas, Int. J. Mod. Phys. D 10, 869 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  22. S. Viaggiu, Int. J. Mod. Phys. D 15, 1441 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  23. T. Lewis, Proc. R. Soc. Lond. 136, 176 (1932)

    Article  ADS  Google Scholar 

  24. S. Viaggiu, Class. Quantum Grav. 24, 2755 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  25. S. Viaggiu, Int. J. Mod. Phys. D 19, 1783 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  26. J.L. Hernandez-Pastora, L. Herrera, J. Martin, Class. Quantum Grav. 33, 235005 (2016)

    Article  ADS  Google Scholar 

  27. J.L. Hernandez-Pastora, L. Herrera, Phys. Rev. D 95, 024003 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  28. L. Herrera, J.L. Hernandez-Pastora, Phys. Rev. D 96, 024048 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  29. K. Dev, M. Gleiser, Gen. Rel. Grav. 35, 1435 (2003)

    Article  ADS  Google Scholar 

  30. E.S. Franz, A.R. Liddle, Phys. Lett. B 404, 25 (1997)

    Article  ADS  Google Scholar 

  31. L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, Oxford, 1959)

  32. R. Bergamini, S. Viaggiu, Class. Quantum Grav. 21, 4567 (2004)

    Article  ADS  Google Scholar 

  33. R. Balbinot, R. Bergamini, B. Giorgini, Nuovo Cimento 1, 1 (1983)

    Article  Google Scholar 

  34. S. Viaggiu, Class. Quantum Grav. 22, 2309 (2005)

    Article  Google Scholar 

  35. J. Ehlers, in Théories Relativistes de la gravitation, Colloques Internationaux du CNRS (CNRS Editions, 1962) p. 275

  36. B.C. Xanthoupolo, Proc. Soc. London A 395, 381 (1979)

    Article  ADS  Google Scholar 

  37. P. Florides, Nuovo Cimento B 13, 1 (1973)

    Article  ADS  Google Scholar 

  38. H. Stephamni, J. Math. Phys. 29, 1650 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  39. D. Garfinkle, E.N. Glass, J.P. Krisch, Gen. Relativ. Gravit. 29, 467 (1997)

    Article  ADS  Google Scholar 

  40. L. Herrera, N.O. Santos, Phys. Rep. 286, 53 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  41. W. Israel, Phys. Rev. D 2, 641 (1970)

    Article  MathSciNet  ADS  Google Scholar 

  42. E. Kyriakopoulos, Int. J. Mod. Phys. D 22, 1350051 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  43. L. Herrera, A. Di Prisco, J. Carot, Phys. Rev. D 97, 124003 (2018)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Viaggiu.

Additional information

This paper is dedicated to the memory of my friend and colleague Roberto Bergamini (1940-2003) who suggested to me the idea to use Cassinian ovals as suitable boundary surfaces to match the Kerr metric.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Viaggiu, S. An algorithm to generate anisotropic rotating fluids with vanishing viscosity. Eur. Phys. J. Plus 133, 551 (2018). https://doi.org/10.1140/epjp/i2018-12345-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2018-12345-x

Navigation