Skip to main content
Log in

A first-principles study of structural and mechanical properties of Ti3AlCxN1-x alloys

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The structural stability, electronic structural and mechanical properties of \( {\rm Ti}_{3}{\rm AlC}_{\mathit{x}} {\rm N}_{1-{\mathit x}}\) ( \( 0\le x\le 1\) has been investigated using the first-principles pseudopotential plane-wave method. The results for the formation energy of these compounds indicate that all the structures are stable. The equilibrium lattice constant values of Ti3AlC and Ti3AlN compounds are in good agreement with the experimental and theoretical data. Bonding behaviour of these alloys has been explained based on Cauchy pressure, electronic density of states and charge density. The Ti3AlN and \( {\rm Ti}_{3}{\rm AlC}_{{\mathit{x}}} {\rm N}_{1-\mathit{x}}\) alloys show metallic bonding whereas Ti3AlC and Ti3Al display directional bonding, judged from Cauchy pressure values. All the structures satisfy the Born stability criteria in terms of elastic constants. Based on the G/B ratios, all structures are associated with ductile behaviour except Ti3Al and Ti3AlC which are brittle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Niewa, W. Schnelle, F.R. Wagner, Z. Anorg. Allg. Chem. 627, 365 (2001)

    Article  Google Scholar 

  2. J.C. Schuster, J. Bauer, J. Solid State Chem. 53, 260 (1984)

    Article  ADS  Google Scholar 

  3. J.C. Schuster, H. Nowothy, C. Vaccaro, J. Solid State Chem. 32, 213 (1980)

    Article  ADS  Google Scholar 

  4. W. Jeitschko, H. Nowotny, F. Benesovsky, Mon. Chem. Chem. Mon. 95, 319 (1964)

    Article  Google Scholar 

  5. M. Krichner, W. Schneller, F.R. Wagner, R. Niewa, Solid State Sci. 5, 1247 (2003)

    Article  ADS  Google Scholar 

  6. C. Hoglund, J. Birch, M. Beckers, B. Alling, Z. Czigany, A. Mucklich, L. Hultman, Eur. J. Inorg. Chem. 8, 1193 (2008)

    Article  Google Scholar 

  7. M. Magnuson, M. Mattesini, C. Hogulund, I.A. Abrikosov, J. Birch, L. Hultman, Phys. Rev. B 78, 235102 (2008)

    Article  ADS  Google Scholar 

  8. A.S. Mikhaylushkin, C. Hogulund, J. Birch, Z.S. Czigany, L. Hultman, S.I. Simak, B. Alling, F. Tasnadi, I.A. Abrikosov, Phys. Rev. B 79, 134107 (2009)

    Article  ADS  Google Scholar 

  9. H.A. Lipsitt, in High-Temperature Ordered Intermetallic Alloys, Materials Research Society Symposium Proceedings, edited by C.C. Koch, C.T. Liu, N.S. Stoloff, Vol. 39 (MRS, 1985) p. 351

  10. W.H. Tian, M. Nemoto, Intermetallics 5, 237 (1997)

    Article  Google Scholar 

  11. R.J. Van-Thyne, H. Kessler, Trans. AIME 196, 193 (1954)

    Google Scholar 

  12. O. Wilhelmsson, J.P. Palmquist, E. Lewin, J. Emmerlich, P. Ekalund, P.O.A. Perrson, H.L.S. Hogberg, R. Ahuja. O. Eriksson, L. Hultman, U. Jansson, J. Cryst. Growth 291, 290 (2006)

    Article  ADS  Google Scholar 

  13. V. Kanchana, EPL 87, 26006 (2009)

    Article  ADS  Google Scholar 

  14. Du Yu-Lei, Chin. Phys. Lett. 26, 117102 (2009)

    Article  ADS  Google Scholar 

  15. Jie Tan, Han Han, Darshana Wickramararatne, Wenguan Liu, Mingwen Zhao, Ping Huai, J. Phys. D: Appl. Phys. 47, 215301 (2014)

    Article  ADS  Google Scholar 

  16. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009) www.pwscf.org

    Google Scholar 

  17. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  18. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3685 (1996)

    Article  Google Scholar 

  19. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  20. T.H. Fisher, J. Almlof, J. Phys. Chem. 96, 9768 (1992)

    Article  Google Scholar 

  21. W.H. Tian, M. Nemoto, Intermetallics 7, 1261 (1999)

    Article  Google Scholar 

  22. H. Olijnyk, A.P. Jephcoat, J. Phys.: Condens. Matter. 12, 10423 (2000)

    ADS  Google Scholar 

  23. M. Born, Proc. Cambridge Philos. Soc. 36, 160 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  24. F.I. Fedorov, Theory of Elastic Waves in Crystals (Plenum, New York, 1968)

  25. W. Voigt, Lehrburch der Kristallphysik (Teubner, Leipzig, 1928)

  26. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929)

    Article  Google Scholar 

  27. R. Hill, Proc. R. Soc. London A 65, 349 (1952)

    Article  Google Scholar 

  28. S.F. Pugh, Philos. Mag. 45, 823 (1954)

    Article  Google Scholar 

  29. K. Tanaka, T. Ichitsubo, H. Inui, M. Yamaguchi, M. Koiwa, Philos. Mag. Lett. 73, 71 (1996)

    Article  ADS  Google Scholar 

  30. K. Tanaka, K. Okamoto, H. Inui, Y. Mininishi, M. Yamaguchi, M. Koiwa, Philos. Mag. A 73, 1475 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Pathak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, A. A first-principles study of structural and mechanical properties of Ti3AlCxN1-x alloys. Eur. Phys. J. Plus 132, 190 (2017). https://doi.org/10.1140/epjp/i2017-11474-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11474-0

Navigation