Skip to main content
Log in

Thermal and elastic characterization of glassy carbon thin films by photoacoustic measurements

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

A portable photoacoustic device is designed and applied to measure thermal diffusivity and linear thermal expansion coefficient of glassy carbon by means of the standard photoacoustic model involving both the thermal diffusion and thermoelastic contributions. This is done by measuring the evolution of the open-cell photoacoustic signal within the modulation frequency interval of 20 Hz-10 kHz, for four samples with thicknesses of 180μm, 140μm, 100μm, and 60μm. A proper fitting procedure of the theoretical amplitude and phase to their corresponding experimental counterparts yielded an average thermal diffusivity of 0.68mm^2·s^-1 and expansion coefficient of \(4.3\times 10^{-6}\) K-1 which are in good agreement with their values reported in the literature for glassy carbon. Furthermore, we demonstrate that the theoretical amplitude does not properly describe the thermoelastic behavior of the samples thinner than \(l \le 100\) μm, due to their strong bending and vibrations driven by the highly disordered fullerene microstructure of glassy carbon followed by the increasing non-homogeneity effects violating 1D heat conduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Pelzl, S. Chotikaprakhan, D. Dietzel, B.K. Bein, E. Neubauer, M. Chirtoc, Eur. Phys. J. ST 153, 335 (2008)

    Article  Google Scholar 

  2. I. Delgadillo-Holtfort, N.E.J. Antoniow, J. Gibkes, M. Chirtoc, B.K. Bein, J. Pelzl, Eur. Phys. J. ST 153, 147 (2008)

    Article  Google Scholar 

  3. X. Filip, M. Chirtoc, J. Pelzl, J. Optoelectron. Adv. Mater. 8, 1088 (2006)

    Google Scholar 

  4. A. Salazar, A. Oleaga, V. Shvalya, E. Apinaniz, Int. J. Therm. Sci. 100, 60 (2016)

    Article  Google Scholar 

  5. N.W. Pech-May, A. Cifuentes, A. Mendioroz, A. Oleaga, A. Salazar, Meas. Sci. Technol. 26, 085017 (2015)

    Article  ADS  Google Scholar 

  6. T.W. Ebbesen, in Physics and Chemistry of the Fullerenes, Vol. 443, edited by K. Prassides (Springer Science & Business Media, Dordrecht, 1994)

  7. H. Wang, N. Yamada, M. Okaji, Netsu Bussei 14, 92 (2000)

    Article  Google Scholar 

  8. D.P. Almond, P.M. Patel, Photothermal Science and Techniques (Chapman & Hall, London, 1996)

  9. J.A. Balderas-Lopez, J. Díaz-Reyes, M.R. Jaime-Fonseca, L. Martínez-Pérez, J.A. Pescador-Rojas, Meas. Sci. Technol. 27, 035204 (2016)

    Article  ADS  Google Scholar 

  10. C. Haisch, Meas. Sci. Technol. 23, 012001 (2012)

    Article  ADS  Google Scholar 

  11. S. Engel, C. Wenisch, F.A. Müller, S. Gräf, Meas. Sci. Technol. 27, 045202 (2016)

    Article  ADS  Google Scholar 

  12. T. Baba, A. Ono, Meas. Sci. Technol. 12, 2046 (2001)

    Article  ADS  Google Scholar 

  13. C. Vales-Pinzon, J. Ordonez-Miranda, J.J. Alvarado-Gil, J. Appl. Phys. 112, 064909 (2012)

    Article  ADS  Google Scholar 

  14. J.A. Baldera-López, J. Eur. Phys. J. ST 153, 167 (2008)

    Article  Google Scholar 

  15. G. Rousset, F. Lepoutre, L. Bertrand, J. Appl. Phys. 54, 2383 (1983)

    Article  ADS  Google Scholar 

  16. A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976)

    Article  ADS  Google Scholar 

  17. F.A. Mcdonald, G.C. Wetsel, J. Appl. Phys. 49, 2313 (1978)

    Article  ADS  Google Scholar 

  18. A.C. Tam, Rev. Mod. Phys. 58, 381 (1986)

    Article  ADS  Google Scholar 

  19. M.V. Marquerinit, N. Cellat, A.M. Mansanares, H. Vargas, L.C.M. Miranda, Meas. Sci. Technol. 2, 396401 (1991)

    Google Scholar 

  20. M.D. Rabasovic, M.G. Nikolic, M.D. Dramicanin, M. Franko, D.D. Markushev, Meas. Sci. Technol. 20, 095902 (2009)

    Article  ADS  Google Scholar 

  21. A. Somer, F. Camilotti, G.F. Costa, C. Bonardi, A. Novatski, A.V.C. Andrade, V.A. Kozlowski, G.K. Cruz, J. Appl. Phys. 114, 063503 (2013)

    Article  ADS  Google Scholar 

  22. D.D. Markushev, J. Ordonez-Miranda, M.D. Rabasović, S. Galović, D.M. Todorović, S.E. Bialkowski, J. Appl. Phys. 117, 245309 (2015)

    Article  ADS  Google Scholar 

  23. A.L. Edwards, A Compilation of Thermal Property Data for Computer Heat-Conduction Calculations (Lawrence Radiation Laboratory, Berkeley, 1969)

  24. D.D. Markushev, M.D. Rabasović, D.M. Todorović, S. Galović, S.E. Bialkowski, Rev. Sci. Instrum. 86, 035110 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Markushev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markushev, D.D., Ordonez-Miranda, J., Rabasović, M.D. et al. Thermal and elastic characterization of glassy carbon thin films by photoacoustic measurements. Eur. Phys. J. Plus 132, 33 (2017). https://doi.org/10.1140/epjp/i2017-11307-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11307-2

Navigation