Skip to main content
Log in

Influence of topology on the scale setting

The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

Recently a new method to set the scale in lattice gauge theories, based on the gradient flow generated by the Wilson action, has been proposed, and the systematic errors of the new scales t0 and w0 have been investigated by various groups. The Wilson flow provides also an interesting alternative smoothing procedure particularly useful for the measurement of the topological charge as a pure gluonic observable. We show the viability of this method for \( N=1\) supersymmetric Yang-Mills theory by analysing the configurations produced by the DESY-Muenster Collaboration. The relation between the scale and the topological charge has been investigated showing a strong correlation. We have found that the scale has a linear dependence on the topological charge, the slope of which increases decreasing the volume and the gluino mass. Moreover we have investigated this dependence as a function of the reference parameter used to define the scale: the tuning of this parameter turns out to be fundamental for a more reliable scale setting. Similar conclusions hold for the Sommer parameter r0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. R. Sommer, Nucl. Phys. B 411, 839 (1994) arXiv:hep-lat/9310022

    Article  ADS  Google Scholar 

  2. M. Lüscher, JHEP 08, 071 (2010) arXiv:1006.4518 [hep-lat]

    Article  Google Scholar 

  3. R. Narayanan, H. Neuberger, JHEP 03, 064 (2006) arXiv:hep-th/0601210

    Article  MathSciNet  ADS  Google Scholar 

  4. S. Borsanyi et al., JHEP 09, 010 (2012) arXiv:1203.4469 [hep-lat]

    Article  ADS  Google Scholar 

  5. G. Bergner, T. Berheide, I. Montvay, G. Münster, U.D. Özugurel, D. Sandbrink, JHEP 09, 108 (2012) arXiv:1206.2341 [hep-lat]

    Article  ADS  Google Scholar 

  6. G. Bergner, I. Montvay, G. Münster, U.D. Özugurel, D. Sandbrink, JHEP 11, 061 (2013) arXiv:1304.2168 [hep-lat]

    Article  ADS  Google Scholar 

  7. K. Demmouche, F. Farchioni, A. Ferling, I. Montvay, G. Münster, E.E. Scholz, J. Wuilloud, Eur. Phys. J. C 69, 147 (2010) arXiv:1003.2073 [hep-lat]

    Article  ADS  Google Scholar 

  8. F. Bruckmann, F. Gruber, K. Jansen, M. Marinkovic, C. Urbach, M. Wagner, Eur. Phys. J. A 43, 303 (2010) arXiv:0905.2849 [hep-lat]

    Article  ADS  Google Scholar 

  9. JLQCD Collaboration (S. Aoki et al.), Phys. Rev. D 78, 014508 (2008) arXiv:0803.3197 [hep-lat]

    Google Scholar 

  10. P. Fritzsch, A. Ramos, F. Stollenwerk, PoS Lattice2013, 461 (2014) arXiv:1311.7304 [hep-lat]

    Google Scholar 

  11. R. Brower, S. Chandrasekharan, J.W. Negele, U.J. Wiese, Phys. Lett. B 560, 64 (2003) arXiv:hep-lat/0302005

    Article  MATH  ADS  Google Scholar 

  12. S. Aoki, H. Fukaya, S. Hashimoto, T. Onogi, Phys. Rev. D 76, 054508 (2007) arXiv:0707.0396 [hep-lat]

    Article  ADS  Google Scholar 

  13. C. Morningstar, M.J. Peardon, Phys. Rev. D 69, 054501 (2004) arXiv:hep-lat/0311018

    Article  ADS  Google Scholar 

  14. I. Montvay, E.E. Scholz, Phys. Lett. B 623, 73 (2005) arXiv:hep-lat/0506006

    Article  ADS  Google Scholar 

  15. E.E. Scholz, I. Montvay, PoS LAT2006, 037 (2006) arXiv:hep-lat/0609042

    Google Scholar 

  16. G. Curci, G. Veneziano, Nucl. Phys. B 292, 555 (1987)

    Article  ADS  Google Scholar 

  17. H. Suzuki, Nucl. Phys. B 861, 290 (2012) arXiv:1202.2598 [hep-lat]

    Article  MATH  ADS  Google Scholar 

  18. G. Münster, H. Stüwe, JHEP 05, 034 (2014) arXiv:1402.6616 [hep-th]

    Article  ADS  Google Scholar 

  19. V.A. Novikov, M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 229, 381 (1983)

    Article  ADS  Google Scholar 

  20. M. Bianchi, S. Kovacs, G.C. Rossi, Lect. Notes Phys. 737, 303 (2008) arXiv:hep-th/0703142

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Creutz, Ann. Phys. 326, 911 (2011) arXiv:1007.5502 [hep-lat]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. C. Bonati, M. D’Elia, Phys. Rev. D 89, 105005 (2014) arXiv:1401.2441 [hep-lat]

    Article  ADS  Google Scholar 

  23. UKQCD Collaboration (D.A. Smith et al.), Phys. Rev. D 58, 014505 (1998) arXiv:hep-lat/9801008

    Article  Google Scholar 

  24. L. Del Debbio, H. Panagopoulos, E. Vicari, JHEP 08, 044 (2002) arXiv:hep-th/0204125

    Article  ADS  Google Scholar 

  25. G. Bergner, P. Giudice, I. Montvay, G. Münster, U.D. Özugurel, S. Piemonte, D. Sandbrink, PoS LATTICE2014, 273 (2014) arXiv:1411.1746 [hep-lat]

    Google Scholar 

  26. M. Lüscher, S. Schaefer, JHEP 07, 036 (2011) arXiv:1105.4749 [hep-lat]

    Article  Google Scholar 

  27. M. Lüscher, S. Schaefer, JHEP 04, 104 (2011) arXiv:1103.1810 [hep-lat]

    Article  ADS  Google Scholar 

  28. R. Sommer, PoS LATTICE2013, 015 (2014) arXiv:1401.3270 [hep-lat]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Piemonte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergner, G., Montvay, I., Giudice, P. et al. Influence of topology on the scale setting. Eur. Phys. J. Plus 130, 229 (2015). https://doi.org/10.1140/epjp/i2015-15229-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2015-15229-7

Keywords

Navigation