Skip to main content
Log in

A novel molecular dynamics study of CO2 permeation through aquaporin-5

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Aquaporins (AQPs) are protein channels which facilitate rapid water permeation across cell membrane. The AQPs are very vital for biological organs, as their malfunction causes severe diseases in human body. A particular family of AQPs, that is AQP5, has a significant role in lung fluid transport due to submucosal glands structure. However, it has not been yet well understood whether these protein channels can conduct gas molecules. Here, Molecular Dynamics (MD) simulations are used to investigate the CO2 permeability and diffusion in AQP5 during a 40-nanosecond period. For the first time, equilibrium and Steered MD (SMD) are used to simulate self and force-induced diffusion of CO2 molecules across AQP5 and POPE lipid bilayer. According to PMFs profile associated to CO2 permeation, the hydrophobic central pore provides a more suitable pathway for gas molecules compared to other AQP5 channels. Although CO2 molecules can also permeate across AQP5 water channels, the rate of CO2 permeation through four channels of the AQP5 monomers is much lower than the central pore. The rate of CO2 permeation through four AQP5 water channels is even lower than CO2 diffusion through POPE lipid membrane. The results reported in this investigation demonstrate that MD simulations of human AQP5 provide valuable insights into the gas permeation mechanism for both the equilibrium self-diffusion, and quasi-equilibrium condition.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Geng, B. Yang, Transport Characteristics of Aquaporins (Springer, The Netherlands, 2017)

    Google Scholar 

  2. G.M. Cooper, E.H. Robert, The Cell: A Molecular Approach (Boston University, Sunderland, 2000)

  3. J.S. Hub, H. Grubmüller, B.L. Groot, Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations?, in Aquaporins, edited by E. Beitz, Handbook of Experimental Pharmacology, Vol. 190 (Springer, 2009) pp. 57--76

  4. L.S. King, D. Kozono, P. Agre, Nat. Rev. Mol. Cell Biol. 5, 687 (2004)

    Article  Google Scholar 

  5. A.S. Verkman, A.K. Mitra, Am. J. Physiol.-Renal Physiol. 278, F13 (2000)

    Article  Google Scholar 

  6. N.L. Nakhoul, B.A. Davis, M.F. Romero, W.F. Boron, Am. J. Physiol.-Cell Physiol. 274, C543 (1998)

    Article  Google Scholar 

  7. A.S. Verkman, Respir. Physiol. Neurobiol. 159, 324 (2007)

    Article  Google Scholar 

  8. S.A. Comhair, W. Xu, L. Mavrakis, M.A. Aldred, K. Asosingh, S.C. Erzurum, Am. J. Respir. Cell Mol. Biol. 49, 723 (2012)

    Article  Google Scholar 

  9. R. Musa-Aziz, L.-M. Chen, M.F. Pelletier, W.F. Boron, Proc. Natl. Acad. Sci. U.S.A. 106, 5406 (2009)

    Article  ADS  Google Scholar 

  10. B. Yang, N. Fukuda, A. van Hoek, M.A. Matthay, T. Ma, A.S. Verkman, J. Biol. Chem. 275, 2686 (2000)

    Article  Google Scholar 

  11. N. Uehlein, C. Lovisolo, F. Siefritz, R. Kaldenhoff, Nature 425, 734 (2003)

    Article  ADS  Google Scholar 

  12. A. Missner, P. Kügler, S.M. Saparov, K. Sommer, J.C. Matthai, M.L. Zeidel, P. Pohl, J. Biol. Chem. 283, 25340 (2008)

    Article  Google Scholar 

  13. M. Alishahi, R. Kamali, O. Abouali, Russ. J. Electrochem. 51, 49 (2015)

    Article  Google Scholar 

  14. M. Alishahi, R. Kamali, O. Abouali, Eur. Phys. J. E 38, 92 (2015)

    Article  ADS  Google Scholar 

  15. C. Maffeo, S. Bhattacharya, J. Yoo, D. Wells, A. Aksimentiev, Chem. Rev. 112, 6250 (2012)

    Article  Google Scholar 

  16. A.R. Binesh, R. Kamali, Biophys. Chem. 207, 107 (2015)

    Article  Google Scholar 

  17. L. Janosi, M. Ceccarelli, PLoS ONE 8, e59897 (2013)

    Article  ADS  Google Scholar 

  18. M. Alishahi, R. Kamali, Biophys. Physicobiol. 15, 255 (2018)

    Article  Google Scholar 

  19. V. Endeward, R. Musa-Aziz, G.J. Cooper, L.-M. Chen, M.F. Pelletier, L.V. Virkki, C.T. Supuran, L.S. King, W.F. Boron, G. Gros, FASEB J. 20, 1974 (2006)

    Article  Google Scholar 

  20. M. Herrera, J.L. Garvin, Pflüg. Arch.-Eur. J. Physiol. 462, 623 (2011)

    Article  Google Scholar 

  21. N. Uehlein, B. Otto, A. Eilingsfeld, F. Itel, W. Meier, R. Kaldenhoff, Sci. Rep. 2, 538 (2012)

    Article  ADS  Google Scholar 

  22. R. Kaldenhoff, L. Kai, N. Uehlein, Biochim. Biophys. Acta 1840, 1592 (2014)

    Article  Google Scholar 

  23. Y. Wang, J. Cohen, W.F. Boron, K. Schulten, E. Tajkhorshid, J. Struct. Biol. 157, 534 (2007)

    Article  Google Scholar 

  24. F. Itel, S. Al-Samir, F. Öberg, M. Chami, M. Kumar, C.T. Supuran, P.M. Deen, W. Meier, K. Hedfalk, G. Gros, V. Endeward, FASEB J. 26, 5182 (2012)

    Article  Google Scholar 

  25. M. Arias-Hidalgo, S. Al-Samir, G. Gros, V. Endeward, Am. J. Physiol.-Cell Physiol. 315, C137 (2018)

    Article  Google Scholar 

  26. S. Park, F. Khalili-Araghi, E. Tajkhorshid, K. Schulten, J. Chem. Phys. 119, 3559 (2003)

    Article  ADS  Google Scholar 

  27. R. Horsefield, K. Norden, M. Fellert, A. Backmark, S. Törnroth-Horsefield, A.C.T. van Scheltinga, J. Kvassman, P. Kjellbom, U. Johanson, R. Neutze, Proc. Natl. Acad. Sci. U.S.A. 105, 13327 (2008)

    Article  ADS  Google Scholar 

  28. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

  29. L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, J. Comput. Chem. 30, 2157 (2009)

    Article  Google Scholar 

  30. J. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. Skeel, L. Kale, K. Schulten, J. Comput. Chem. 26, 1781 (2005)

    Article  Google Scholar 

  31. J. Huang, A.D. MacKerell, J. Comput. Chem. 34, 2135 (2013)

    Article  Google Scholar 

  32. F. Zhu, E. Tajkhorshid, K. Schulten, Biophys. J. 83, 154 (2002)

    Article  ADS  Google Scholar 

  33. O.S. Smart, J.G. Neduvelil, X. Wang, B.A. Wallace, M.S. Sansom, J. Mol. Graph. 14, 354 (1996)

    Article  Google Scholar 

  34. M.O. Jensen, S. Park, E. Tajkhorshid, K. Schulten, Proc. Natl. Acad. Sci. U.S.A. 99, 6731 (2002)

    Article  ADS  Google Scholar 

  35. Marvin, A full featured chemical editor for making science accessible on all platforms, ChemAxon, 2019, available at https://chemaxon.com/products/marvin

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Kamali.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alishahi, M., Kamali, R. A novel molecular dynamics study of CO2 permeation through aquaporin-5. Eur. Phys. J. E 42, 151 (2019). https://doi.org/10.1140/epje/i2019-11912-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2019-11912-x

Keywords

Navigation