Skip to main content
Log in

Numerical simulation and scaling of droplet deformation in a hyperbolic flow

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Motivated by a recent experiment (C. Ulloa et al., Phys. Rev. E 89, 033004 (2014)), droplet deformation in a flat microfluidic channel having a cross intersection with two inlet channels and two outlet channels, i.e. hyperbolic flow, is numerically investigated. Employing the boundary element method (BEM), we numerically solve the Darcy equation in the two dimensions and investigate droplet motion and droplet deformation as the droplet enters the cross intersection. We numerically find that the maximum deformation of droplet depends on droplet size, capillary number, viscosity ratio and flow rate ratio of the two inlets. Our numerical scaling is in good agreement with the experimental scaling report.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.T. Nguyen, S. Wereley, Fundamentals and Applications of Microfluidics (Artech House, Boston, London, 2002)

  2. S. Handayani, D.T. Chiu, E. Tjitra, J.S. Kuo, D. Lampah, E. Kenangalem, L. Renia, G. Snounou, R.N. Price, N.M. Anstey, B. Russell, J. Infect. Dis. 199, 445 (2009)

    Article  Google Scholar 

  3. G. Tomaiuolo, M. Barra, V. Preziosi, A. Cassinese, B. Rotoli, S. Guido, Lab Chip 11, 449 (2011)

    Article  Google Scholar 

  4. S. Guido, V. Preziosi, Adv. Colloid Interface Sci. 161, 89 (2010)

    Article  Google Scholar 

  5. C.N. Baroud, F. Gallaire, R. Dangla, Lab Chip 10, 2032 (2010)

    Article  Google Scholar 

  6. J.C. Baret, Lab Chip 12, 422 (2012)

    Article  Google Scholar 

  7. S. Guido, G. Tomaiuolo, C.R. Phys. 10, 751 (2009)

    Article  ADS  Google Scholar 

  8. E. Kadivar, S. Herminghaus, M. Brinkmann, J. Phys.: Condens. Matter 25, 285102 (2013)

    Google Scholar 

  9. E. Kadivar, Eur. J. Mech. B/Fluids 57, 75 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. D.R. Link, S.L. Anna, D.A. Weitz, H.A. Stone, Phys. Rev. Lett. 92, 054503 (2004)

    Article  ADS  Google Scholar 

  11. L. Salkin, A. Schmit, L. Courbin, P. Panizza, Lab Chip 13, 3022 (2013)

    Article  Google Scholar 

  12. N. Bremond, A.R. Thiam, J. Bibette, Phys. Rev. Lett. 100, 024501 (2008)

    Article  ADS  Google Scholar 

  13. J.C. Baret, V. Taly, M. Ryckelynck, C.A. Merten, A.D. Griffiths, Med. Sci. 25, 627 (2009)

    Google Scholar 

  14. E. Kadivar, EPL 106, 24003 (2014)

    Article  ADS  Google Scholar 

  15. G. Taylor, Proc. R. Soc. London, Ser. A 138, 41 (1932)

    Article  ADS  Google Scholar 

  16. G. Taylor, Proc. R. Soc. London, Ser. A 146, 501 (1934)

    Article  ADS  Google Scholar 

  17. J.M. Rallison, Annu. Rev. Fluid Mech. 16, 45 (1984)

    Article  ADS  Google Scholar 

  18. B. Bentley, L. Leal, J. Fluid Mech. 167, 241 (1986)

    Article  ADS  Google Scholar 

  19. Q. Brosseau, J. Vrignon, J.-C. Baret, Soft Matter 10, 3066 (2014)

    Article  ADS  Google Scholar 

  20. C. Ulloa, A. Ahumada, M.L. Cordero, Phys. Rev. E 89, 033004 (2014)

    Article  ADS  Google Scholar 

  21. C.D. Eggleton, K.J. Stebe, J. Colloid Interface Sci. 208, 68 (1998)

    Article  Google Scholar 

  22. H. Xi, C. Duncan, Phys. Rev. E 59, 3022 (1999)

    Article  ADS  Google Scholar 

  23. M. Nagel, F. Gallaire, Comput. Fluids 107, 272 (2015)

    Article  MathSciNet  Google Scholar 

  24. C.A. Stan, A.K. Ellerbee, L. Guglielmini, H.A. Stone, G.M. Whitesides, Lab Chip 13, 365 (2013)

    Article  Google Scholar 

  25. C.A. Stan, L. Guglielmini, A.K. Ellerbee, D. Caviezel, H.A. Stone, G.M. Whitesides, Phys. Rev. E 84, 036302 (2011)

    Article  ADS  Google Scholar 

  26. X. Chen, C. Xue, L. Zhang, G. Hu, X. Jiang, J. Sun, Phys. Fluids 26, 112003 (2014)

    Article  ADS  Google Scholar 

  27. F. Gallaire, P. Meliga, P. Laure, C.N. Baroud, Phys. Fluids 26, 062105 (2014)

    Article  ADS  Google Scholar 

  28. K.V. McCloud, J.V. Maher, Phys. Rep. 260, 139 (1995)

    Article  ADS  Google Scholar 

  29. C. Liu, Z. Li, AIP Adv. 1, 032108 (2011)

    Article  ADS  Google Scholar 

  30. C.W. Park, M. Homsy, J. Fluid Mech. 139, 291 (1984)

    Article  ADS  Google Scholar 

  31. C. Pozrikids, A Practical Guide to Boundary Element Methods (CRC Press, FL, USA, 2002)

  32. H.A. Stone, Annu. Rev. Fluid Mech. 26, 65 (1994)

    Article  ADS  Google Scholar 

  33. T. Cubaud, Phys. Rev. E 80, 026307 (2009)

    Article  ADS  Google Scholar 

  34. Y. Tian, R. Holt, R. Apfel, J. Colloid Interface Sci. 187, 1 (1997)

    Article  Google Scholar 

  35. J. Martin, J. Marhefka, K. Migler, S. Hudson, Adv. Mater. 23, 426 (2011)

    Article  Google Scholar 

  36. H.A. Stone, L.G. Leal, J. Fluid Mech. 220, 161 (1990)

    Article  ADS  Google Scholar 

  37. A. Ramachandran, K. Tsigklifis, A. Roy, G. Leal, J. Rheol. 56, 45 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfan Kadivar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadivar, E., Alizadeh, A. Numerical simulation and scaling of droplet deformation in a hyperbolic flow. Eur. Phys. J. E 40, 31 (2017). https://doi.org/10.1140/epje/i2017-11521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11521-9

Keywords

Navigation