Skip to main content

Advertisement

Log in

Development of a high-pressure set-up for measurements of binary diffusion coefficients in supercritical carbon dioxide

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We present the development of a high-pressure apparatus for measurements of diffusion coefficients in supercritical fluids. The Taylor dispersion method has been adapted to conduct experiments at the pressures up to 25.0 MPa. In order to test the developed set-up, binary diffusion coefficients D at infinite dilution in supercritical carbon dioxide have been measured for a reference system, benzene, at temperatures in the range of 309.50-319.95 K. The effects of flow velocity, number of consecutive injections and absorbance at different wave numbers on the diffusion coefficient have been analysed. The obtained diffusion coefficients are of the order of 10-8 m 2/s and in excellent agreement with the available literature data.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.A. Montero, C.B. Smith, W.A. Hendrix, D.L. Butcher, Ind. Eng. Chem. Res. 39, 4806 (2000)

    Article  Google Scholar 

  2. G. Musie, M. Wei, B. Subramaniam, D.H. Busch, Coord. Chem. Rev. 219221, 789 (2001)

    Article  Google Scholar 

  3. C.A. Eckert, C.L. Liotta, D. Bush, J.S. Brown, J.P. Hallett, J. Phys. Chem. B 108, 18108 (2004)

    Article  Google Scholar 

  4. D. Hoang, S. Bensaid, G. Saracco, Green Process. Synth. 2, 407 (2013)

    Google Scholar 

  5. P. Girotra, S.K. Singh, K. Nagpal, Pharm. Dev. Technol. 18, 22 (2013)

    Article  Google Scholar 

  6. K.M. Sharif, M.M. Rahman, J. Azmir, A. Mohammed, M.H.A. Jahurul, F. Sahena, I.S.M. Zaidul, J. Food Engin. 124, 105 (2014)

    Article  Google Scholar 

  7. J.W. King, Annu. Rev. Food Sci. Technol. 5, 215 (2014)

    Article  Google Scholar 

  8. Y. Sun, Curr. Pharm. Des. 20, 349 (2014)

    Article  Google Scholar 

  9. Q.D. Truong, M.K. Devaraju, Y. Ganbe, T. Tomai, I. Honma, Sci. Rep. 4, 03975 (2014)

    Article  ADS  Google Scholar 

  10. G. Anitescu, R. Lin, L.L. Tavlarides, Directions in Engine Efficiency and Emissions Research (DEER) Conference, August 3-6, Dearborn, MI, USA (2009)

  11. R.M. Weinheimer, D.F. Evans, E.L. Cussler, J. Colloid Interface Sci. 80, 357 (1981)

    Article  Google Scholar 

  12. H.-C. Chen, S.-H. Chen, Chem. Eng. Sci. 40, 521 (1985)

    Article  Google Scholar 

  13. I.M.J.J. van de Ven-Lucassen, F.G. Kieviet, P.J.A.M. Kerkhof, J. Chem. Eng. Data 40, 407 (1995)

    Article  Google Scholar 

  14. S. Sarraute, M.F. Costa Gomes, A.A.H. Pádua, J. Chem. Eng. Data 54, 2389 (2009)

    Article  Google Scholar 

  15. A. Mialdun, V. Sechenyh, J.C. Legros, J.M. Ortiz de Zrate, V. Shevtsova, J. Chem. Phys. 139, 104903 (2013)

    Article  ADS  Google Scholar 

  16. V. Sechenyh, J.C. Legros, V. Shevtsova, C. R. - Mec. 341, 490 (2013)

    Article  ADS  Google Scholar 

  17. A. Mialdun, J.C. Legros, V. Yasnou, V. Sechenyh, V. Shevtsova, Eur. Phys. J. E 38, 27 (2015)

    Article  Google Scholar 

  18. J.C. Legros, Y. Gaponenko, A. Mialdun, T. Triller, A. Hammon, C. Bauer, W. Köhler, V. Shevtsova, Phys. Chem. Chem. Phys. 17, 27713 (2015)

    Article  Google Scholar 

  19. V. Sechenyh, J.C. Legros, A. Mialdun, J.M. Ortiz de Zrate, V. Shevtsova, J. Phys. Chem. B 120, 535 (2016)

    Article  Google Scholar 

  20. G. Taylor, Proc. R. Soc. London, Ser. A, Math. Phys. Sci. 219, 186 (1953)

    Article  ADS  Google Scholar 

  21. G. Taylor, Proc. R. Soc. London, Ser. A, Math. Phys. Sci. 225, 473 (1954)

    Article  ADS  Google Scholar 

  22. K.K. Liong, P.A. Wells, N.R. Foster, J. Supercritical Fluids 4, 91 (1991)

    Article  Google Scholar 

  23. J.M.H. Levelt Sengers, U.K. Deiters, U. Klask, P. Swidersky, G.M. Schneider, Int. J. Thermophys. 14, 893 (1993)

    Article  ADS  Google Scholar 

  24. T. Funazukuri, N. Nishimoto, N. Wakao, J. Chem. Eng. Data 39, 911 (1994)

    Article  Google Scholar 

  25. T.J. Bruno, J. Thermophys. Heat Transfer 8, 329 (1994)

    Article  ADS  Google Scholar 

  26. O.J. Catchpole, M.B. King, Ind. Eng. Chem. Res. 33, 1828 (1994)

    Article  Google Scholar 

  27. C.M. Silva, E.A. Macedo, Ind. Eng. Chem. Res. 37, 1490 (1998)

    Article  Google Scholar 

  28. J.J. Suarez, I. Medina, J.L. Bueno, Fluid Phase Equilibria 153, 167 (1998)

    Article  Google Scholar 

  29. H. Higashi, Y. Iwai, Y. Arai, Chem. Eng. Sci. 56, 3027 (2001)

    Article  Google Scholar 

  30. T. Funazukuri, C.Y. Kong, S. Kagei, J. Chromatogr. A 1037, 411 (2004)

    Article  Google Scholar 

  31. C.Y. Kong, T. Funazukuri, S. Kagei, J. Supercritical Fluids 37, 359 (2006)

    Article  Google Scholar 

  32. R. Lin, L.L. Tavlarides, J. Supercritical Fluids 52, 47 (2010)

    Article  Google Scholar 

  33. C. Secuianu, G.C. Maitland, J.P.M. Trusler, W.A. Wakeham, J. Chem. Eng. Data 56, 4840 (2011)

    Article  Google Scholar 

  34. S.P. Cadogan, G.C. Maitland, J.P.M. Trusler, J. Chem. Eng. Data 59, 519 (2014)

    Article  Google Scholar 

  35. Y. Suehiro, M. Nakajima, K. Yamada, M. Uematsu, J. Chem. Thermodyn. 28, 1153 (1996)

    Article  Google Scholar 

  36. Ph. Morin, M. Caude, H. Richard, R. Rosset, Chromotographia 21, 523 (1986)

    Article  Google Scholar 

  37. I. Swaid, G.M. Schneider, Ber. Bunseng. Phys. Chem. Chem. Phys. 83, 969 (1979)

    Article  Google Scholar 

  38. R. Feist, Diploma thesis, University of Bochum (1980)

  39. J. Ellert, Diploma thesis, University of Bochum (1986)

  40. P.R. Sassiat, P. Mourier, M.H. Caude, R.H. Rosset, Anal. Chem. 59, 1164 (1987)

    Article  Google Scholar 

  41. P. Swidersky, Diploma thesis, University of Bochum (1991)

  42. S. Umezawa, A. Nagashima, J. Supercrit. Fluids 5, 242 (1992)

    Article  Google Scholar 

  43. J.L. Bueno, J.J. Suarez, J. Dizy, I. Medina, J. Chem. Eng. Data 38, 344 (1993)

    Article  Google Scholar 

  44. B.C. Smith, Spectroscopy 31, 34 (2016)

    Google Scholar 

  45. L.A.M. Janssen, Chem. Eng. Sci. 31, 215 (1976)

    Article  Google Scholar 

  46. A. Alizadeh, C.A. Nieto de Castro, W.A. Wakeham, Int. J. Thermophys. 1, 243 (1980)

    Article  ADS  Google Scholar 

  47. A. Akgerman, C. Erkey, M. Orejuela, Ind. Eng. Chem. Res. 35, 911 (1996)

    Article  Google Scholar 

  48. K.-I. Ago, H. Nishiumi, J. Chem. Eng. Jpn. 32, 563 (1999)

    Article  Google Scholar 

  49. T. Funazukuri, C.Y. Kong, S. Kagei, Int. J. Thermophys. 22, 1643 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ancherbak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ancherbak, S., Santos, C., Legros, J.C. et al. Development of a high-pressure set-up for measurements of binary diffusion coefficients in supercritical carbon dioxide. Eur. Phys. J. E 39, 111 (2016). https://doi.org/10.1140/epje/i2016-16111-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2016-16111-9

Keywords

Navigation