Skip to main content
Log in

Do thermal diffusion and Dufour coefficients satisfy Onsager’s reciprocity relation?

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

It is commonly admitted that in liquids the thermal diffusion and Dufour coefficients DT and DF satisfy Onsager’s reciprocity. From their relation to the cross-coefficients of the phenomenological equations, we are led to the conclusion that this is not the case in general. As illustrative and physically relevant examples, we discuss micellar solutions and colloidal suspensions, where DT arises from chemical reactions or viscous effects but is not related to the Dufour coefficient DF. The situation is less clear for binary molecular mixtures; available experimental and simulation data do not settle the question whether DT and DF are reciprocal coefficients.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Onsager, Phys. Rev. 38, 2265 (1931).

    Article  MATH  ADS  Google Scholar 

  2. S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover, New York, 1984).

  3. B.D. Coleman, C. Truesdell, J. Chem. Phys. 33, 28 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  4. R.P. Rastogi, G.L. Madan, Trans. Farad. Soc. 62, 3325 (1966).

    Article  Google Scholar 

  5. S. Hartmann, G. Wittko, W. Köhler, K.I. Morozov, K. Albers, G. Sadowski, Phys. Rev. Lett. 109, 065901 (2013).

    Article  ADS  Google Scholar 

  6. R.G. Mortimer, H. Eyring, Proc. Natl. Acad. Sci. U.S.A. 77, 1728 (1980).

    Article  ADS  Google Scholar 

  7. S.S.L. Peppin, M.J. Spannuth, J.S. Wettlaufer, J. Stat. Phys. 134, 701 (2009).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. H. Ge, arXiv:1406.2769.

  9. R.P. Rastogi, B.L.S. Yadava, J. Chem. Phys. 51, 2826 (1969).

    Article  ADS  Google Scholar 

  10. R.P. Rastogi, B.L.S. Yadava, J. Chem. Phys. 52, 2791 (1970).

    Article  ADS  Google Scholar 

  11. R.L. Rowley, F.H. Horne, J. Chem. Phys. 68, 325 (1978).

    Article  ADS  Google Scholar 

  12. S. Wiegand, J. Phys.: Condens. Matter 16, R357 (2004).

    ADS  Google Scholar 

  13. S. Iacopini, R. Rusconi, R. Piazza, Eur. Phys. J. E 19, 597 (2006).

    Article  Google Scholar 

  14. A.L. Sehnem, R. Aquino, A.F.C. Campos, F.A. Tourinho, J. Depeyrot, A.M. Figueiredo Neto, Phys. Rev. E 89, 032308 (2014).

    Article  ADS  Google Scholar 

  15. A. Würger, Rep. Prog. Phys. 73, 126601 (2010).

    Article  ADS  Google Scholar 

  16. D. MacGowan, D.J. Evans, Phys. Rev. A 34, 2133 (1986).

    Article  ADS  Google Scholar 

  17. G.V. Paolini, G. Ciccotti, Phys. Rev. A 35, 5156 (1987).

    Article  ADS  Google Scholar 

  18. N.A.T. Miller, P.J. Daivis, I.K. Snook, B.D. Todd, J. Chem. Phys. 139, 144504 (2013).

    Article  ADS  Google Scholar 

  19. J. Armstrong, Fernando Bresme, Phys. Chem. Chem. Phys. 16, 12307 (2014).

    Article  Google Scholar 

  20. S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, 1960).

  21. J.A. W. Elliott, H.Y. Elmoazzen, L. McGann, J. Chem. Phys. 113, 6573 (2000).

    Article  ADS  Google Scholar 

  22. F. Mondiot, J.-C. Loudet, O. Mondain-Monval, P. Snabre, A. Vilquin, A. Würger, Phys. Rev. E 86, 010401(R) (2012).

    Article  ADS  Google Scholar 

  23. A. Würger, J. Phys.: Condens. Matter 26, 035105 (2014).

    Google Scholar 

  24. E. Helfand, J.G. Kirkwood, J. Phys. Chem. 32, 857 (1960).

    Article  Google Scholar 

  25. R.L. Saxton, E.L. Dougherty, H.G. Drickamer, J. Chem. Phys. 22, 1166 (1954).

    Article  ADS  Google Scholar 

  26. S. Villain-Guillot, A. Würger, Phys. Rev. E , (2011).

  27. R. Haase, Z. Phys. 127, 1 (1949).

    Article  ADS  Google Scholar 

  28. L.J.T.M. Kempers, J. Chem. Phys. 90, 6541 (1989).

    Article  ADS  Google Scholar 

  29. K. Shukla, A. Firoozabadi, Ind. Eng. Chem. Res. 37, 3331 (1998).

    Article  Google Scholar 

  30. M. Eslamian, M. Ziad Saghir, Phys. Rev. E 80, 061201 (2009).

    Article  ADS  Google Scholar 

  31. A. Leahy-Dios, A. Firoozabadi, J. Phys. Chem. B 111, 191 (2007).

    Article  Google Scholar 

  32. P. Blanco, P. Polyakov, M. Mounir Bou-Ali, S. Wiegand, J. Phys. Chem. B 112, 8340 (2008).

    Article  Google Scholar 

  33. J.S. Chickos, W. Hanshaw, J. Chem. Eng. Data 40, 620 (2003).

    Google Scholar 

  34. J.A. Madariaga, C. Santamaría, M.M. Bou-Ali, P. Urteaga, D. Alonso De Mezquia, J. Phys. Chem. B 114, 6937 (2010).

    Article  Google Scholar 

  35. D. Alonso De Mezquia, M.M. Bou-Ali, M. Larranaga, J.A. Madariaga, C. Santamaría, J. Phys. Chem. B 116, 2814 (2012).

    Article  Google Scholar 

  36. U. Kaatze, J. Phys. Chem. B 115, 10470 (2011).

    Article  Google Scholar 

  37. D. Vigolo, S. Buzzaccaro, R. Piazza, Langmuir 26, 7792 (2010).

    Article  Google Scholar 

  38. J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989).

    Article  ADS  Google Scholar 

  39. B.V. Derjaguin, G.P. Sidorenkov, Doklady Akad. Nauk. SSSR 32, 622 (1941).

    Google Scholar 

  40. B.V. Derjaguin, N.V. Churaev, V.M. Muller, Surface Forces (Plenum, New York, 1987).

  41. R. Piazza, J. Phys.: Condens. Matter 16, S4195 (2004).

    ADS  Google Scholar 

  42. K.A. Eslahian, A. Majee, M. Maskos, A. Würger, Soft Matter 10, 1931 (2014).

    Article  ADS  Google Scholar 

  43. A. Würger, C. R. Acad. Sci. Méc. 341, 438 (2013).

    Article  Google Scholar 

  44. J.C. Giddings et al., Macromolecules 9, 106 (1976).

    Article  ADS  Google Scholar 

  45. F. Brochard, P.-G. de Gennes, C. R. Acad. Sci. Paris, Sér. II 293, 72 (1981).

    Google Scholar 

  46. C. Debuschewitz, W. Köhler, Phys. Rev. Lett. 87, 055901 (2001).

    Article  ADS  Google Scholar 

  47. R. Kita, G. Kircher, S. Wiegand, J. Chem. Phys. 121, 9140 (2004).

    Article  ADS  Google Scholar 

  48. R. Kita, P. Polyakov, S. Wiegand, Macromolecules 40, 1638 (2007).

    Article  ADS  Google Scholar 

  49. M. Hartung, J. Rauch, W. Köhler, J. Chem. Phys. 125, 214904 (2006).

    Article  ADS  Google Scholar 

  50. F. Müller-Plathe, D. Reith, Comput. Theor. Polymer Sci. 9, 203 (1999).

    Article  Google Scholar 

  51. P.-A. Artola, B. Rousseau, Phys. Rev. Lett. 98, 125901 (2007).

    Article  ADS  Google Scholar 

  52. G. Galliero, S. Volz, J. Chem. Phys. 128, 064505 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alois Würger.

Additional information

Contribution to the Topical Issue “Thermal nonequilibrium phenomena in multi-component fluids” edited by Fabrizio Croccolo and Henri Bataller.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Würger, A. Do thermal diffusion and Dufour coefficients satisfy Onsager’s reciprocity relation?. Eur. Phys. J. E 37, 96 (2014). https://doi.org/10.1140/epje/i2014-14096-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2014-14096-y

Keywords

Navigation