Skip to main content
Log in

Experimental evidence for interplay of dynamic heterogeneity and finite-size effect in glassy polymers

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Despite two decades of extensive research, direct experimental evidence of a dynamical length scale determining the glass transition of confined polymers has yet to emerge. Using a recently established experimental technique of interface micro-rheology we provide evidence of finite-size effect truncating the growth of a quantity proportional to a dynamical length scale in confined glassy polymers, on cooling towards the glass transition temperature. We show how the interplay of variation of polymer film thickness and this temperature-dependent growing dynamical length scale determines the glass transition temperature, which in our case of 2–3 nm thick films, is reduced significantly as compared to their bulk values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. G.M. Whitesides, Nature 442, 368 (2006).

    Article  ADS  Google Scholar 

  2. J. Israelachvili, H. Wennerstrom, Nature 379, 219 (1996).

    Article  ADS  Google Scholar 

  3. M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005).

    Article  ADS  Google Scholar 

  4. T.D. Li, E. Riedo, Phys. Rev. Lett. 100, 106102 (2008).

    Article  ADS  Google Scholar 

  5. S. Han, M.Y. Choi, P. Kumar, H.E. Stanley, Nat. Phys. 6, 685 (2010).

    Article  Google Scholar 

  6. C. Alba-Simionesco1 et al., Eur. Phys. J. E 12, 19 (2003).

    Article  Google Scholar 

  7. D. Morineaua et al., J. Chem. Phys. 121, 1466 (2004).

    Article  ADS  Google Scholar 

  8. U. Raviv, J. Klein, Science 297, 1540 (2002).

    Article  ADS  Google Scholar 

  9. P.A. O’Connell, G.B. McKenna, Science 307, 1760 (2005).

    Article  ADS  Google Scholar 

  10. A. Serghei, H. Huth, C. Schick, F. Kremer, Macromolecules 41, 3636 (2008).

    Article  ADS  Google Scholar 

  11. S. Srivastava, J.K. Basu, Phys. Rev. Lett. 98, 165701 (2007).

    Article  ADS  Google Scholar 

  12. J.A. Forrest, K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 167 (2001).

    Article  Google Scholar 

  13. Z. Yang, Y. Fujii, F.K. Lee, C.-H. Lam, O.K.C. Tsui, Science 328, 1676 (2010).

    Article  ADS  Google Scholar 

  14. H. Shintani, H. Tanaka, Nat. Phys. 2, 200 (2006).

    Article  Google Scholar 

  15. F. Sausset, G. Tarjus, Phys. Rev. Lett. 104, 065701 (2010).

    Article  ADS  Google Scholar 

  16. S.A. Kivelson, G. Tarjus, Nat. Mater. 7, 831 (2008).

    Article  ADS  Google Scholar 

  17. E. Donth, The Glass Transition: Realaxation Dynamics in Liquids and Disordered Materials (Springer-Verlag, Berlin, 2001).

  18. C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000).

    Article  ADS  Google Scholar 

  19. V. Lubchenko, Peter G. Wolynes, Annu. Rev. Phys. Chem. 58, 235 (2007).

    Article  ADS  Google Scholar 

  20. W. Gotze, Complex Dynamics of Glass-Forming Liquids: A Mode-Coupling Theory (Oxford University Press, 2009).

  21. C. Bennemann, C. Donati, J. Baschnagel, S.C. Glotzer, Nature 246, 399 (1999).

    Google Scholar 

  22. L. Berthier et al., Science 310, 1797 (2005).

    Article  ADS  Google Scholar 

  23. W. Kob, C. Donati, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997).

    Article  ADS  Google Scholar 

  24. M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000).

    Article  ADS  Google Scholar 

  25. P. Ballesta, A. Duri, L. Cipelletti, Nat. Phys. 4, 550 (2008).

    Article  Google Scholar 

  26. A.S. Keys et al., Nat. Phys. 3, 260 (2007).

    Article  Google Scholar 

  27. A.K. Kandar, R. Bhattacharya, J.K. Basu, Phys. Rev. E. 81, 041504 (2010).

    Article  ADS  Google Scholar 

  28. A.K. Kandar, R. Bhattacharya, J.K. Basu, J. Chem. Phys. 133, 071102 (2010).

    Article  ADS  Google Scholar 

  29. A. Schonhals, H. Goering, C. Schick, B. Frick, R. Zorn, J. Non-Cryst. Solids 351, 2668 (2005).

    Article  ADS  Google Scholar 

  30. P. Sarangapani, J. Zhao, Y. Zhu, J. Chem. Phys. 129, 104514 (2008).

    Article  ADS  Google Scholar 

  31. K. Jagannathan, B.J. Sung, A. Yethiraj, Phys. Rev. Lett. 97, 145503 (2006).

    Article  ADS  Google Scholar 

  32. S. Srivastava et al., Soft Matter. 7, 1994 (2011).

    Article  ADS  Google Scholar 

  33. C. Toninelli, M. Wyart, L. Berthier, G. Biroli, J.-P. Bouchaud, Phys. Rev. E. 71, 041505 (2005).

    Article  ADS  Google Scholar 

  34. C. Dalle-Ferrier et al., Phys. Rev. E. 76, 041510 (2007).

    Article  ADS  Google Scholar 

  35. C. Donati, S. Franz, S.C. Glotzer, G. Parisi, J. Non-Cryst. Solids 307, 215 (2002).

    Article  ADS  Google Scholar 

  36. J.L. Barrat, J. Baschnagel, A. Lyulin, Soft Matter 6, 3430 (2010).

    Article  ADS  Google Scholar 

  37. S. Karmakar, C. Dasgupta, S. Sastry, Proc. Natl. Acad. Sci. U.S.A. 106, 3675 (2009).

    Article  ADS  Google Scholar 

  38. J. Mattsson et al., Nature 462, 83 (2009).

    Article  ADS  Google Scholar 

  39. V. Pryamitsyn, V. Ganesan, Macromolecules 43, 5851 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. K. Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kandar, A.K., Basu, J.K. Experimental evidence for interplay of dynamic heterogeneity and finite-size effect in glassy polymers. Eur. Phys. J. E 34, 95 (2011). https://doi.org/10.1140/epje/i2011-11095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11095-6

Keywords

Navigation