Skip to main content
Log in

Reversible sphere-to-lamellar wetting transition at the interface of a diblock copolymer system

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

We use ellipsometry to investigate a transition in the morphology of a sphere-forming diblock copolymer thin-film system. At an interface the diblock morphology may differ from the bulk when the interfacial tension favours wetting of the minority domain, thereby inducing a sphere-to-lamella transition. In a small, favourable window in energetics, one may observe this transition simply by adjusting the temperature. Ellipsometry is ideally suited to the study of the transition because the additional interface created by the wetting layer affects the polarisation of light reflected from the sample. Here we study thin films of poly(butadiene-ethylene oxide) (PB-PEO), which order to form PEO minority spheres in a PB matrix. As temperature is varied, the reversible transition from a partially wetting layer of PEO spheres to a full wetting layer at the substrate is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F.S. Bates, G.H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990).

    Article  ADS  Google Scholar 

  2. G.H. Fredrickson, F.S. Bates, Annu. Rev. Mater. Sci. 26, 501 (1996).

    Article  ADS  Google Scholar 

  3. M. Matsen, F. Bates, J. Chem. Phys. 106, 2436 (1997).

    Article  ADS  Google Scholar 

  4. M. Matsen, J. Phys.: Condens. Matter 14, R21 (2002).

    Article  ADS  Google Scholar 

  5. M. Turner, M. Rubinstein, C. Marques, Macromolecules 27, 4986 (1994).

    Article  ADS  Google Scholar 

  6. M. Matsen, J. Chem. Phys. 106, 7781 (1997).

    Article  ADS  Google Scholar 

  7. M. Fasolka, A. Mayes, Annu. Rev. Mater. Res. 31, 323 (2001).

    Article  ADS  Google Scholar 

  8. P. Green, R. Limary, Adv. Colloid Interface Sci. 94, 53 (2001).

    Article  Google Scholar 

  9. H. Xiang, K. Shin, T. Kim, S. Moon, T. McCarthy, T. Russell, Macromolecules 37, 5660 (2004).

    Article  ADS  Google Scholar 

  10. H. Xiang, K. Shin, T. Kim, S. Moon, T. McCarthy, T. Russell, J. Polym. Sci., Part B: Polym. Phys. 43, 3377 (2005).

    Article  ADS  Google Scholar 

  11. B. Yu, P. Sun, T. Chen, Q. Jin, D. Ding, B. Li, A. Shi, Phys. Rev. Lett. 96, 138306 (2006).

    Article  ADS  Google Scholar 

  12. A. Croll, M. Massa, M. Matsen, K. Dalnoki-Veress, Phys. Rev. Lett. 97, 204502 (2006) ISSN 1079-7114

    Article  ADS  Google Scholar 

  13. J. Kim, M. Matsen, Soft Matter 5, 2889 (2009) ISSN 1744-683X

    Article  ADS  Google Scholar 

  14. T. Kim, J. Huh, C. Park, Macromolecules 43, 5352 (2010) ISSN 0024-9297

    Article  ADS  Google Scholar 

  15. H. Tan, D. Yan, A. Shi, Macromolecules 37, 9646 (2004).

    Article  ADS  Google Scholar 

  16. P. Mansky, T. Russell, C. Hawker, M. Pitsikalis, J. Mays, Macromolecules 30, 6810 (1997).

    Article  ADS  Google Scholar 

  17. E. Huang, P. Mansky, T. Russell, C. Harrison, P. Chaikin, R. Register, C. Hawker, J. Mays, Macromolecules 33, 80 (2000).

    Article  ADS  Google Scholar 

  18. H. Huinink, J. Brokken-Zijp, M. Van Dijk, G. Sevink, J. Chem. Phys. 112, 2452 (2000).

    Article  ADS  Google Scholar 

  19. H. Yokoyama, T. Mates, E. Kramer, Macromolecules 33, 1888 (2000).

    Article  ADS  Google Scholar 

  20. M. Fasolka, P. Banerjee, A. Mayes, G. Pickett, A. Balazs, Macromolecules 33, 5702 (2000).

    Article  ADS  Google Scholar 

  21. L. Tsarkova, A. Knoll, G. Krausch, R. Magerle, Macromolecules 39, 3608 (2006).

    Article  ADS  Google Scholar 

  22. G. Stein, E. Kramer, X. Li, J. Wang, Macromolecules 40, 2453 (2007).

    Article  ADS  Google Scholar 

  23. G. Stein, E. Cochran, K. Katsov, G. Fredrickson, E. Kramer, X. Li, J. Wang, Phys. Rev. Lett. 98, 158302 (2007).

    Article  ADS  Google Scholar 

  24. Y. Li, Y. Loo, R. Register, P. Green, Macromolecules 38, 7745 (2005).

    Article  ADS  Google Scholar 

  25. Y. Huang, H. Chen, T. Hashimoto, Macromolecules 36, 764 (2003).

    Article  ADS  Google Scholar 

  26. In order to obtain the sphere radius, we used the strong-stretching theory expression for domain size as described by Matsen and Bates bates1997 with experimental parameters for the sphere radius and volume fractions given for an equivalent system by similar system by Huang and co-workers [25].

  27. C. Vasilev, H. Heinzelmann, G. Reiter, J. Polym. Sci., Part B: Polym. Phys. 42, 1312 (2004).

    Article  ADS  Google Scholar 

  28. J. Carvalho, M. Massa, K. Dalnoki-Veress, J. Polym. Sci., Part B: Polym. Phys. 44, 3448 (2006).

    Article  ADS  Google Scholar 

  29. J. Carvalho, M. Somers, K. Dalnoki-Veress, J. Polym. Sci., Part B: Polym. Phys. 49, 712 (2011).

    Article  ADS  Google Scholar 

  30. R. Azzam, N. Bashara, S. Ballard, Phys. Today 31, 72 (1978).

    Article  Google Scholar 

  31. C. Vasilev, G. Reiter, S. Pispas, N. Hadjichristidis, Polymer 47, 330 (2006).

    Article  Google Scholar 

  32. P. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena (Springer-Verlag, New York Inc., 2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dalnoki-Veress.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, J.L., Massa, M.V., Cormier, S.L. et al. Reversible sphere-to-lamellar wetting transition at the interface of a diblock copolymer system. Eur. Phys. J. E 34, 51 (2011). https://doi.org/10.1140/epje/i2011-11051-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2011-11051-6

Keywords

Navigation