Skip to main content
Log in

Active transport and cluster formation on 2D networks

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We introduce a model for active transport on inhomogeneous networks embedded in a diffusive environment which is motivated by vesicular transport on actin filaments. In the presence of a hard-core interaction, particle clusters are observed that exhibit an algebraically decaying distribution in a large parameter regime, indicating the existence of clusters on all scales. The scale-free behavior can be understood by a mechanism promoting preferential attachment of particles to large clusters. The results are compared with a diffusion-limited aggregation model and active transport on a regular network. For both models we observe aggregation of particles to clusters which are characterized by a finite size scale if the relevant time scales and particle densities are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Parmeggiani, T. Franosch, E. Frey, Phys. Rev. Lett. 90, 086601 (2003)

    Article  ADS  Google Scholar 

  2. M.R. Evans, R. Juhász, L. Santen, Phys. Rev. E 68, 026117 (2003)

    Article  ADS  Google Scholar 

  3. K. Nishinari, Y. Okada, A. Schadschneider, D. Chowdhury, Phys. Rev. Lett. 95, 118101 (2005)

    Article  ADS  Google Scholar 

  4. P. Greulich, A. Garai, K. Nishinari, A. Schadschneider, D. Chowdhury, Phys. Rev. E 75, 041905 (2007)

    Article  ADS  Google Scholar 

  5. S. Klumpp, T.M. Nieuwenhuizen, R. Lipowsky, Physica E 29, 380 (2005)

    Article  ADS  Google Scholar 

  6. S. Klumpp, T.M. Nieuwenhuizen, R. Lipowsky, Biophys. J. 88, 3118 (2005)

    Article  Google Scholar 

  7. S. Klumpp, R. Lipowsky, Europhys. Lett. 66, 90 (2004)

    Article  ADS  Google Scholar 

  8. S. Klumpp, R. Lipowsky, Phys. Rev. Lett. 95, 268102 (2005)

    Article  ADS  Google Scholar 

  9. J. Krug, Phys. Rev. Lett. 67, 1882 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Janowsky, J. Lebowitz, Phys. Rev. A 45, 618 (1992)

    Article  ADS  Google Scholar 

  11. M. Barma, Physica A 372, 22 (2006)

    Article  ADS  Google Scholar 

  12. P. Greulich, A. Schadschneider, Physica A 387, 1972 (2008)

    Article  ADS  Google Scholar 

  13. P. Greulich, A. Schadschneider, Phys. Rev. E 79, 031107 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  14. R. Juhász, L. Santen, F. Iglói, Phys. Rev. E 74, 061101 (2006)

    Article  ADS  Google Scholar 

  15. T. Chou, G. Lakatos, Phys. Rev. Lett. 93, 198101 (2004)

    Article  ADS  Google Scholar 

  16. K. Nagel, M. Schreckenberg, J. Phys. I 2, 2221 (1992)

    Article  Google Scholar 

  17. D. Chowdhury, L. Santen, A. Schadschneider, Phys. Rep. 329, 199 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  18. D. Chowdhury, A. Schadschneider, Phys. Rev. E 59, R1311 (1999)

    Article  ADS  Google Scholar 

  19. J.D. Noh, H. Rieger, Phys. Rev. Lett. 92, 118701 (2004)

    Article  ADS  Google Scholar 

  20. J.D. Noh, J. Korean Phys. Soc. 50, 327 (2007)

    Article  Google Scholar 

  21. J.J. Sieber, et al., Science 317, 1072 (2007)

    Article  ADS  Google Scholar 

  22. M. Schmitt, private communications, 2008

  23. N. Destainville, Phys. Rev. E 77, 011905 (2008)

    Article  ADS  Google Scholar 

  24. T. Gil, J.H. Ipsen, O.G. Mouritsen, M.C. Sabra, M.M. Sperotto, M.J. Zuckermann, Biochim. Biophys. Acta - Biomembranes 1376, 245 (1998)

    Google Scholar 

  25. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland, 2002)

  26. A.E. Carlsson, A.D. Shah, D. Elking, T.S. Karpova, J.A. Cooper, Biophys. J. 82, 2333 (2002)

    Article  Google Scholar 

  27. I.N. Serdyuk, N.R. Zaccai, J. Zaccai, Methods in Molecular Biophysics (Cambridge University Press, 2007)

  28. J. Valdez-Taubas, H.R. Pelham, Curr. Biol. 13, 1636 (2003)

    Article  Google Scholar 

  29. P. Meakin, F. Family, Phys. Rev. A 38, 2110 (1988)

    Article  ADS  Google Scholar 

  30. C. Heussinger, E. Frey, Phys. Rev. Lett. 06, 017802 (2006)

    Article  ADS  Google Scholar 

  31. M.E.J. Newman, arXiv cond-mat/0412004v3 (2004)

  32. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  33. R.D. Mullins, J.A. Heuser, T.D. Pollard, Proc. Natl. Acad. Sci. U.S.A. 95, 6181 (1998)

    Article  ADS  Google Scholar 

  34. A. Carlsson, M. Wear, J. Cooper, Biophys. J. 86, 1074 (2004)

    Article  ADS  Google Scholar 

  35. M.L. Cano, D.A. Lauffenburger, S.H. Zigmond, J. Cell Biol. 115, 677 (1991)

    Article  Google Scholar 

  36. A.A. Rodal, L. Kozubowski, B.L. Goode, D.G. Drubin, J.H. Hartwig, Mol. Biol. Cell 16, 372 (2005)

    Article  Google Scholar 

  37. A. Gopinathan, K. Lee, J.M. Schwarz, A.J. Liu, Phys. Rev. Lett. 99, 058103 (2007)

    Article  ADS  Google Scholar 

  38. B.A. Korgel, J.H. van Zanten, H.G. Monbouquette, Biophys. J. 74, 3264 (1998)

    Article  ADS  Google Scholar 

  39. B. Govindan, R. Bowser, P. Novick, J. Cell Biol. 128, 1055 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Greulich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greulich, P., Santen, L. Active transport and cluster formation on 2D networks. Eur. Phys. J. E 32, 191–208 (2010). https://doi.org/10.1140/epje/i2010-10603-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2010-10603-6

Keywords

Navigation