Skip to main content
Log in

Diffusion limited cluster aggregation with irreversible slippery bonds

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

Irreversible diffusion limited cluster aggregation (DLCA) of hard spheres was simulated using Brownian cluster dynamics. Bound spheres were allowed to move freely within a specified range, but no bond breaking was allowed. The structure and size distribution of the clusters was investigated before gelation. The pair correlation function and the static structure factor of the gels were determined as a function of the volume fraction and time. Slippery bonds led to local densification of the clusters and the gels, with a certain degree of order. At low volume fractions densification of the clusters occurred during their growth, but at higher volume fractions it occurred mainly after gelation. At very low volume fractions, the large-scale structure (fractal dimension), size distribution and growth kinetics of the clusters was found to be close to that known for DLCA with rigid bonds. Restructuring of the gels continued for long times, indicating that aging processes in systems with strong attraction do not necessarily involve bond breaking. The mean-square displacement of particles in the gels was determined. It is shown to be highly heterogeneous and to increase with decreasing volume fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.N. Wilking, S.M. Graves, C.B. Chang, K. Meleson, M.Y. Lin, T.G. Mason, Phys. Rev. Lett. 96, 015501 (2006).

    Google Scholar 

  2. M. Carpineti, F. Ferri, M. Giglio, E. Paganini, U. Perini, Phys. Rev. A 42, 7347 (1990).

    Google Scholar 

  3. T. Nicolai, S. Cocard, Eur. Phys. J. E 5, 221 (2001).

    Google Scholar 

  4. D.A. Weitz, J.S. Huang, Phys. Rev. Lett. 54, 1416 (1985).

    Google Scholar 

  5. M.Y. Lin, H.M. Lindsay, D.A. Weitz, R. Klein, R.C. Ball, P. Meakin, J. Phys.: Condens. Matter 2, 3093 (1990).

    Google Scholar 

  6. M.Y. Lin, H.M. Lindsay, D.A. Weitz, R.C. Ball, R. Klein, P. Meakin, Phys. Rev. A 41, 2005 (1990).

  7. P. Meakin, Phys. Rev. Lett. 51, 1119 (1983).

    Google Scholar 

  8. M. Kolb, R. Botet, R. Jullien, Phys. Rev. Lett. 51, 1123 (1983).

    Google Scholar 

  9. S. Diez Orrite, S. Stoll, P. Schurtenberger, Soft Matter 1, 364 (2005).

  10. J.C. Gimel, D. Durand, T. Nicolai, Phys. Rev. B 51, 11348 (1995).

    Google Scholar 

  11. J.C. Gimel, T. Nicolai, D. Durand, J. Sol-Gel Sci. Technol. 15, 129 (1999).

    Google Scholar 

  12. J.C. Gimel, T. Nicolai, D. Durand, J.-M. Teuler, Eur. Phys. J. B 12, 91 (1999).

    Google Scholar 

  13. M. Rottereau, J.C. Gimel, T. Nicolai, D. Durand, Eur. Phys. J. E 15, 133 (2004).

    Google Scholar 

  14. M. Rottereau, J.C. Gimel, T. Nicolai, D. Durand, Eur. Phys. J. E 15, 141 (2004).

    Google Scholar 

  15. C.R. Seager, T.G. Mason, Phys. Rev. E 75, 011406 (2007).

    Google Scholar 

  16. G. Odriozola, A. Moncho-Jorda, A. Schmitt, J. Callejas-Fernandez, R. Martinez-Garcia, R. Hidalgo-Alvarez, Europhys. Lett. 53, 797 (2001).

    Google Scholar 

  17. P. Meakin, F. Family, Phys. Rev. A 36, 5498 (1987).

    Google Scholar 

  18. P. Meakin, Phys. Scr. 46, 295 (1992).

    Google Scholar 

  19. D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1992).

  20. A.E. Gonzalez, Phys. Rev. Lett. 71, 2248 (1993).

    Google Scholar 

  21. A.D. Dinsmore, D.A. Weitz, J. Phys.: Condens. Matter 14, 7581 (2002).

    Google Scholar 

  22. A.I. Campbell, V.J. Anderson, J.S. van Duijneveldt, P. Bartlett, Phys. Rev. Lett. 94, 208301 (2005).

    Google Scholar 

  23. P.J. Lu, J.C. Conrad, H.M. Wyss, A.B. Schofield, D.A. Weitz, Phys. Rev. Lett. 96, 028306 (2006).

    Google Scholar 

  24. N.B. Simeonova, R.P.A. Dullens, D.G.A.L. Aarts, V.W.A. de Villeneuve, H.N.W. Lekkerkerker, W.K. Kegel, Phys. Rev. E 73, 041401 (2006).

    Google Scholar 

  25. K.N. Pham, S.U. Egelhaaf, P.N. Pusey, W.C.K. Poon, Phys. Rev. E 69, 011503 (2004).

    Google Scholar 

  26. S. Manley, H.M. Wyss, K. Miyazaki, J.C. Conrad, V. Trappe, L.J. Kaufman, D.R. Reichman, D.A. Weitz, Phys. Rev. Lett. 95, 238302 (2005).

    Google Scholar 

  27. S. Babu, J.C. Gimel, T. Nicolai, C. De Michele, J. Chem. Phys. 128, 204504 (2008).

    Google Scholar 

  28. M. von Smoluchowski, Z. Phys. 17, 585 (1916).

    Google Scholar 

  29. M. von Smoluchowski, Z. Phys. Chem. 92, 129 (1917).

    Google Scholar 

  30. S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).

    Google Scholar 

  31. M. Lattuada, H. Wu, M. Morbidelli, J. Colloid Interface Sci. 268, 96 (2003).

    Google Scholar 

  32. G. Odriozola, A. Schmitt, J. Callejas-Fernandez, R. Martinez-Garcia, R. Hidalgo-Alvarez, J. Chem. Phys. 111, 7657 (1999).

    Google Scholar 

  33. H. Wu, J. Xie, M. Morbidelli, Biomacromolecules 6, 3189 (2005).

  34. M. Rottereau, J.C. Gimel, T. Nicolai, D. Durand, Eur. Phys. J. E 11, 61 (2003).

    Google Scholar 

  35. G. Odriozola, R. Leone, A. Schmitt, J. Callejas-Fernandez, R. Martinez-Garcia, R. Hidalgo-Alvarez, J. Chem. Phys. 121, 5468 (2004).

    Google Scholar 

  36. J.C. Gimel, T. Nicolai, D. Durand, J. Phys. A: Math. Gen. 33, 7687 (2000).

    Google Scholar 

  37. C.I. Mendoza, C.M. Marques, Physica A 335, 305 (2003).

  38. G. Foffi, C. De Michele, F. Sciortino, P. Tartaglia, J. Chem. Phys. 122, 224903 (2005).

    Google Scholar 

  39. T. Kihara, Rev. Mod. Phys. 25, 831 (1953).

    Google Scholar 

  40. A.M. Puertas, M. Fuchs, M.E. Cates, Phys. Rev. Lett. 88, 098301 (2002).

    Google Scholar 

  41. A.M. Puertas, M. Fuchs, M.E. Cates, Phys. Rev. E 67, 031406 (2003).

    Google Scholar 

  42. K.A. Dawson, G. Foffi, M. Fuchs, W. Götze, F. Sciortino, M. Sperl, P. Tartaglia, T. Voigtmann, E. Zaccarelli, Phys. Rev. E 63, 011401 (2000).

    Google Scholar 

  43. E. Zaccarelli, F. Sciortino, P. Tartaglia, G. Foffi, G.D. McCullagh, A. Lawlor, K.A. Dawson, Physica A 314, 539 (2002).

  44. F. Cardinaux, T. Gibaud, A. Stradner, P. Schurtenberger, Phys. Rev. Lett. 99, 118301 (2007).

    Google Scholar 

  45. R.J.M. d’ Arjuzon, W. Frith, J.R. Melrose, Phys. Rev. E 67, 061404 (2003).

  46. K.G. Soga, J.R. Melrose, R.C. Ball, J. Chem. Phys. 110, 2280 (1999).

    Google Scholar 

  47. E. Del Gado, W. Kob, Phys. Rev. Lett. 98, 028303 (2007).

    Google Scholar 

  48. J.F.M. Lodge, D.M. Heyes, Phys. Chem. Chem. Phys. 1, 2119 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Gimel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babu, S., Gimel, J.C. & Nicolai, T. Diffusion limited cluster aggregation with irreversible slippery bonds. Eur. Phys. J. E 27, 297–308 (2008). https://doi.org/10.1140/epje/i2008-10381-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2008-10381-8

PACS

Navigation