Skip to main content
Log in

Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study the two-dimensional flow of foams around a circular obstacle within a long channel. In experiments, we confine the foam between liquid and glass surfaces. In simulations, we use a deterministic software, the Surface Evolver, for bubble details and a stochastic one, the extended Potts model, for statistics. We adopt a coherent definition of liquid fraction for all studied systems. We vary it in both experiments and simulations, and determine the yield drag of the foam, that is, the force exerted on the obstacle by the foam flowing at very low velocity. We find that the yield drag is linear over a large range of the ratio of obstacle to bubble size, and is independent of the channel width over a large range. Decreasing the liquid fraction, however, strongly increases the yield drag; we discuss and interpret this dependence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999).

  • A. Saint-Jalmes, D.J. Durian, J. Rheol. 43, 1411 (1999).

    Article  ADS  Google Scholar 

  • D. Weaire, S. Hutzler, The Physics of Foams (Oxford University Press, Oxford, 1999).

  • R. Höhler, S. Cohen-Addad J. Phys.: Condens. Matter 17, R1041 (2005).

  • D.M.A. Buzza, C.-Y. D. Lu, M.E. Cates, J. Phys. II 5, 37 (1995).

    Article  ADS  Google Scholar 

  • F. Graner, Y. Jiang, E. Janiaud, C. Flament, Phys. Rev. E 63, 11402 (2001).

    Article  ADS  Google Scholar 

  • H.M. Princen, J. Colloid. Interface Sci. 91, 160 (1983).

    Article  Google Scholar 

  • S.A. Khan, R.C. Armstrong, J. Non-Newtonian Fluid Mech. 22, 1 (1986).

    Article  Google Scholar 

  • B. Dollet, F. Elias, C. Quilliet, C. Raufaste, M. Aubouy, F. Graner, Phys. Rev. E 71, 031403 (2005).

    Article  ADS  Google Scholar 

  • P.L.J. Zitha, Transp. Porous Media 52, 1 (2003); S.J. Cox, S. Neethling, W.R. Rossen, W. Schleifenbaum, P. Schmidt-Wellenburg, J.J. Cilliers, Colloids Surf. A 245, 143 (2004).

    Article  Google Scholar 

  • I. Cantat, N. Kern, R. Delannay Europhys. Lett. 65, 726 (2004).

    Article  ADS  Google Scholar 

  • N.D. Denkov, S. Tcholakova, K. Golemanov, V. Subramanian, A. Lips, Colloids Surf. A 282-283, 329 (2006).

    Google Scholar 

  • Workshop on Foam Rheology In Two dimensions (FRIT), Aberystwyth (UK), June 2005, http://users.aber.ac.uk/sxc/frit.html.

  • M. Asipauskas, J.A. Glazier, unpublished.

  • S.J. Cox, M.D. Alonso, S. Hutzler, D. Weaire, in Eurofoam 2000, Proceedings of the 3rd Euroconference on Foams, Emulsions and Applications, Delft (The Netherlands), June 2000, edited by P. Zitha, J. Banhart, G. Verbist (MIT Verlag, Bremen, 2000) pp. 282-289.

  • J.R. de Bruyn, Rheol. Acta 44, 150 (2004).

    Article  Google Scholar 

  • I. Cantat, O. Pitois, J. Phys.: Condens. Matter 17, S3455 (2005).

  • I. Cantat, O. Pitois, Phys. Fluids 18, 083302 (2006).

    Article  Google Scholar 

  • M.F. Vaz, S.J. Cox, Philos. Mag. Lett. 85, 415 (2005).

    Article  ADS  Google Scholar 

  • E. Janiaud, D. Weaire, S. Hutzler, to be published in Colloids. Surf. A (2007).

  • This is due to the left-right symmetry of a bubble wall meeting the solid boundary. This is independent of the hydrophilic or hydrophobic nature of the solid surface (which would only play a role, through the presence or absence of a wetting film, in the energy dissipation, not relevant in the present paper).

  • A.D. Gopal, D.J. Durian, Phys. Rev. Lett. 91, 188303 (2003).

    Article  ADS  Google Scholar 

  • S. Cohen-Addad, R. Höhler, Y. Khidas, Phys. Rev. Lett. 93, 028302 (2004).

    Article  ADS  Google Scholar 

  • B. Dollet, F. Elias, C. Quilliet, A. Huillier, M. Aubouy, F. Graner, Colloids. Surf. A 263, 101 (2005).

    Article  Google Scholar 

  • K. Brakke, Exp. Math. 1, 141 (1992).

    MATH  Google Scholar 

  • S.J. Cox, B. Dollet, F. Graner, Rheol. Acta 45, 403 (2006).

    Article  Google Scholar 

  • J. Lauridsen, M. Twardos, M. Dennin, Phys. Rev. Lett. 89, 098303 (2002).

    Article  ADS  Google Scholar 

  • M. Twardos, M. Dennin, Phys. Rev. E. 71, 061401 (2005).

    Article  ADS  Google Scholar 

  • Y. Jiang, P.J. Swart, A. Saxena, M. Asipauskas, J.A. Glazier, Phys. Rev. E 59, 5819 (1999).

    Article  ADS  Google Scholar 

  • D.J. Srolovitz, M.P. Anderson, G.S. Grest, P.S. Sahni, Scr. Metall. 17, 241 (1983).

    Article  Google Scholar 

  • E.A. Holm, J.A. Glazier, D.J. Srolovitz, G.S. Grest, Phys. Rev. A 43, 2662 (1991).

    Article  ADS  Google Scholar 

  • F. Bolton, D. Weaire, Phys. Rev. Lett. 65, 3449 (1990).

    Article  ADS  Google Scholar 

  • S.J. Cox, D. Weaire, M.F. Vaz, Eur. Phys. J. E 7, 311 (2002).

    Google Scholar 

  • B. Dollet, F. Graner, to be published in J. Fluid. Mech. (2007) physics/0606170.

  • B. Dollet, M. Durth, F. Graner, Phys. Rev. E 73, 061404 (2006).

    Article  ADS  Google Scholar 

  • H.M. Princen, A.D. Kiss, J. Colloid Interface Sci. 128, 176 (1989).

    Article  Google Scholar 

  • E. Janiaud, D. Weaire, S. Hutzler, Phys. Rev. Lett. 97, 038302 (2006).

    Article  ADS  Google Scholar 

  • Y. Wang, K. Krishan, M. Dennin, Phys. Rev. E 73, 031401 (2006).

    Article  ADS  Google Scholar 

  • B. Dollet, Écoulement bidimensionnels de mousse autour d'obstacles, PhD Thesis, unpublished, available on-line at http://www-lsp.ujf-grenoble.fr/pdf/theses/dtbn.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Raufaste.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raufaste, C., Dollet, B., Cox, S. et al. Yield drag in a two-dimensional foam flow around a circular obstacle: Effect of liquid fraction. Eur. Phys. J. E 23, 217–228 (2007). https://doi.org/10.1140/epje/i2006-10178-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2006-10178-9

PACS.

Navigation