Skip to main content
Log in

Glass transition of the two distinct single-chain particles of poly(N-isopropylacrylamide)

  • Original Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Two distinct single-chain particles of poly(N-isopropylacrylamide) (PNIPAM) in the state of loose coil and compact globule, have been prepared successfully below and above the lower critical solution temperature (LCST) in extreme dilute aqueous solution by the freeze-drying method, respectively. During the preparation of the compact globular single-chain sample, the surfactant of sodium n-dodecyl sulfate (SDS) was added into the system to prevent aggregation of globular single chains formed at a temperature above the LCST. After all the coil has been transformed into the compact globular particle, the SDS molecules were removed by dialysis. The glass transition temperature (Tg) of the two single-chain samples has been measured by differential scanning calorimetery (DSC) in comparison with that of bulk polymer. It was found that the Tg of the single-chain sample in compact-globule state was very near to that of the bulk polymer, whereas the Tg of the single-chain sample in loose-coil state was approximately 6 K lower than that of the bulk polymer. After treating the sample with repeated DSC cycles, the Tg of the single-chain sample in loose-coil state rose up successively near to that of the bulk polymer. These results have been explained in terms of the effect of entanglement on the mobility of the polymer segments in the two distinct single-chain samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Qian, in Comprehensive Polymer Science, 2nd Supplement, edited by G. Allen, S.L. Aggarwal, S. Russo (Elsevier Science Ltd., Oxford, 1996) pp. 541.

  2. H. Bu, Y. Pang, D. Song, T. Yu, T. Voll, G. Czornyi, B. Wunderlich, J. Polym. Sci. B 29, 139 (1991).

    CAS  Google Scholar 

  3. H. Bu, S. Shi, E. Chen, H. Hu, J. Macromol. Sci. Phys. B 35, 731 (1996).

    Google Scholar 

  4. J. Cao, F. Gu, Y. Liu, S. Bi, H. Bu, Macromol. Symp. 124, 89 (1997).

    CAS  Google Scholar 

  5. R. Qian, L. Wu, D. Shen, D. Napper, R. Mann, D. Sangster, Macromolecules 26, 2950 (1993).

    CAS  Google Scholar 

  6. S. Wang, Dissertation, Nanjing University, China (1997).

  7. S. Wang, Q. Dai, J. Hong, X. Yan, R. Cheng, Chem. J. Chin. Univ. 19, 1526 (1998).

    CAS  Google Scholar 

  8. M. Richardson, J. Polym. Sci. C 3, 21 (1963).

    Google Scholar 

  9. M. Furuta, J. Polym. Sci. Polym. Phys. Ed. 14, 479 (1976).

    CAS  Google Scholar 

  10. C. Ruscher, J. Polym. Sci. C 16, 2923 (1964).

    Google Scholar 

  11. G. Koszterszitz, W. Barnikol, G. Schulz, Makromol. Chem. 178, 1133 (1977).

    CAS  Google Scholar 

  12. R. Cheng, Macromol. Symp. 124, 27 (1997).

    CAS  Google Scholar 

  13. R. Qian, in Macromolecules, edited by H. Benoit, P. Rempp (Pergamon, Oxford, 1982) pp. 139.

  14. R. Qian, T. Cao, S. Chen, F. Bai, Sci. China B 12, 1080 (1983).

    Google Scholar 

  15. J. Ding, G. Xue, Q. Dai, R. Cheng, Polymer 34, 3325 (1993).

    CAS  Google Scholar 

  16. D. Huang, Y. Yang, G. Zhuang, B. Li, Macromolecules 32, 6675 (1999).

    CAS  Google Scholar 

  17. D. Huang, Y. Yang, G. Zhuang, B. Li, Macromolecules 33, 461 (2000).

    CAS  Google Scholar 

  18. P. Bernazzani, S. Simon, D. Plazek, K. Ngai, Eur. Phys. J. E 8, 201 (2002).

    CAS  PubMed  Google Scholar 

  19. Y. Mi, G. Xue, X. Lu, Macromolecules 36, 7560 (2003).

    CAS  Google Scholar 

  20. Y. Mi, J. Wang, Y. Zhang, E. Chen, S. Cheng, Polymer 42, 4533 (2001).

    CAS  Google Scholar 

  21. R. Qian, Macromol. Symp. 124, 15 (1997).

    CAS  Google Scholar 

  22. K. Kubota, S. Fujishige, I. Ando, J. Phys. Chem. 94, 5154 (1990).

    CAS  Google Scholar 

  23. H.G. Schild, Prog. Polym. Sci. 17, 163 (1992).

    CAS  Google Scholar 

  24. C. Wu, X. Wang, Y. Gao, Gaofenzi Xuebao 3, 9 (1998).

    Google Scholar 

  25. R. Walter, J. Ricka, Ch. Qullet, R. Nyffenegger, T. Binkert, Macromolecules 29, 4019 (1996).

    CAS  Google Scholar 

  26. H. Yang, X. Yan, R. Cheng, J. Polym. Sci. B 38, 1188 (2000).

    Google Scholar 

  27. H. Yang, R. Cheng, Z. Wang, Polymer, 44, 7175(2003).

  28. H. Yang, X. Yan, R. Cheng, Macromol. Rapid Commun. 23, 1037 (2002).

    CAS  Google Scholar 

  29. O. Chiantore, M. Guaita, L. Trossarelli, Makromol. Chem. 180, 969 (1979)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, W., Yang, H. & Cheng, R. Glass transition of the two distinct single-chain particles of poly(N-isopropylacrylamide). Eur. Phys. J. E 17, 1–5 (2005). https://doi.org/10.1140/epje/i2004-10113-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/i2004-10113-2

PACS.

Navigation