Skip to main content
Log in

Water-dispersed lamellar phases of symmetric poly(styrene)-block-poly(acrylic acid) diblock copolymers: Model systems for flat dense polyelectrolyte brushes

  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We investigate the static properties of a water-dispersed lamellar (L) phase formed in the melt state with a nearly symmetric poly(styrene)-block-poly(acrylic acid) (PS-b-PAA) diblock copolymer. The PAA brush is considered as a model flat polyelectrolyte (PE) brush of controlled surface density. Thanks to small-angle X-ray scattering, its behavior in water is studied as a function of (i) its ionization, through the pH of the dispersions which is increased by an addition of a known amount of a base, i.e. sodium hydroxyde NaOH, and (ii) in the presence of a monovalent salt, i.e. sodium chloride NaCl, of concentration C S . At low pH, we find that the brush effectively behaves as a neutral brush. At high pH, the brush is in the so-called “osmotic regime”, in which all sodium counterions are trapped within the brush volume and stretch the chains via an osmotic effect. The properties of such a brush in the presence of a monovalent salt, confirm this result, showing a C S -1/3 dependence in the brush height L O , in agreement with mean-field predictions. The L O -C S profiles at different ionizations give access to the actual brush internal charge fraction f. The results are found to be in very good quantitative agreement with experimental measures found in the literature, and can be completely and quantitatively described by Oosawa’s approach to counterion condensation in a semi-dilute to concentrated solution of charged, rod-like chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.-G. De Gennes, J. Phys. 37, 1443 (1976)

    Google Scholar 

  2. S. Alexander, J. Phys. 38, 977 (1977)

    Google Scholar 

  3. M. Daoud, J.-P. Cotton, J. Phys. 43, 531 (1982)

    Google Scholar 

  4. E. Raphael, J. Phys. IV France 9, 1 (1999)

    MATH  Google Scholar 

  5. P. Pincus, T. Witten, Europhys. Lett. 3, 315 (1987)

    Google Scholar 

  6. P. Pincus, Macromolecules 24, 2912 (1991)

    Google Scholar 

  7. R.S. Ross, P. Pincus, Macromolecules 35, 2177 (1992)

    Google Scholar 

  8. O.V. Borisov, E.B. Zhulina, T.M. Birshtein, Macromolecules 27, 4795 (1994)

    Google Scholar 

  9. O.V. Borisov, T.M. Birshtein, E.B. Zhulina, J. Phys. II France 1, 521 (1991)

    Article  MATH  Google Scholar 

  10. M.N. Tamashiro, E. Hernandez-Zapata, P.A. Schorr, M. Balastre, M. Tirrel, P. Pincus, J. Chem. Phys. 115, 1960 (2001)

    Article  Google Scholar 

  11. S.J. Miklavic, S. Marcelja, J. Phys. Chem. 92, 6718 (1988)

    Google Scholar 

  12. S. Misra, S. Varasani, P.P. Varasani, Macromolecules 22, 4173 (1989)

    Google Scholar 

  13. S. Misra, S. Varasani, P.P. Varasani, Macromolecules 29, 2618 (1996)

    Article  Google Scholar 

  14. E.B. Zhulina, O.V. Borisov, T.M. Birshtein, J. Phys. II France 2, 63 (1992)

    Article  Google Scholar 

  15. E.B. Zhulina, T.M. Birshtein, O.V. Borisov, Macromolecules 28, 1491 (1995)

    Google Scholar 

  16. S.T. Milner, T.A. Witten, M.E. Cates, Macromolecules 21, 2610 (1988)

    Google Scholar 

  17. A.M. Skvortsov, A.A. Gorbunov, I.V. Pavlushkov, E.B. Zhulina, O.V. Borisov, V.A. Pryamitsyn, Polymer Science USSR 30, 1706 (1988)

    Article  Google Scholar 

  18. G. Grest, M. Murat, Macromolecules 26, 3108 (1993); G. Grest, M. Murat, Macromolecules 24, 704 (1991); G. Grest, M. Murat, Macromolecules 22, 4054 (1989)

    Google Scholar 

  19. A. Chakrabarti, R. Toral, Macromolecules 23, 2016 (1990)

    Google Scholar 

  20. P. Auroy, L. Auvray, L. Léger, Physica A 172, 269 (1991)

    Article  Google Scholar 

  21. P. Auroy, Y. Mir, L. Auvray, Phys. Rev. Lett. 69, 93 (1992)

    Article  Google Scholar 

  22. Y. Tran, P. Auroy, L.T. Lee, Macromolecules 32, 8952 (1999)

    Article  Google Scholar 

  23. W. Groenewegen, A. Lapp, S.U. Egelhaaf, J.R.C. van der Maarel, Macromolecules 33, 3283 and 4080 (2000); J.R.C. Van der Maarel, W. Groenwegen, Langmuir 16, 7510 (2000)

    Article  Google Scholar 

  24. Q. de Robillard, X. Guo, M. Ballauff, T. Narayanan, Macromolecules 33, 9109 (2000); X. Guo, M. Ballauff, Phys. Rev. E, 64, 1406 (2001); X. Guo, M. Ballauff, Langmuir 16, 8719 (2000)

    Article  Google Scholar 

  25. P. Guenoun, A. Schalchli, D. Sentenac, J.W. Mays, J.J. Benattar, Phys. Rev. Lett. 74, 3628 (1995)

    Article  Google Scholar 

  26. M. Balastre, F. Li, P. Schorr, J. Yang, J.W. Mays, M. Tirrell, Macromolecules 35, 9480 (2002)

    Article  Google Scholar 

  27. H. Ahrens, S. Förster, C.A. Helm, Phys. Rev. Lett. 81, 4172 (1998)

    Article  Google Scholar 

  28. R. Israëls, F.A.M. Leermakers, G.J. Fleer, Macromolecules 27, 3087 (1994)

    Google Scholar 

  29. C. Prinz, P. Muller, M. Maaloum, Macromolecules 33, 4896 (2000); C. Prinz, P. Muller, M. Maaloum, Langmuir 16, 6636 (2000)

    Article  Google Scholar 

  30. E.P.K. Currie, A.B. Sieval, M. Avena, H. Zuilhof, E.J.R. Sudhöter, M.A. Cohen-Stuart, Langmuir 15, 7116 (1999). E.P.K. Currie, A.B. Sieval, G.J. Fleer, M.A. Cohen-Stuart, Langmuir 16, 8324 (2000)

    Article  Google Scholar 

  31. M. Biesalki, J. Rühe, Langmuir 16, 1943 (2000); T. Stöhr, J. Rühe, Macromolecules 33, 4501 (2000)

    Article  Google Scholar 

  32. P. Guenoun, F. Muller, M. Delsanti, L. Auvray, Y.J. Chen, J.W. Mays, M. Tirrell, Phys. Rev. Lett. 81, 3872 (1998)

    Article  Google Scholar 

  33. P. Corpart, D. Charmot, S.Z. Zard, T. Biadatti, D. Michelet, US Patent #6,153,705, November 28, 2000, to Rhodia Chimie

    Google Scholar 

  34. M. Destarac, D. Charmot, X. Franck, S.Z. Zard, Macromol. Rapid Commun. 21, 1035 (2000)

    Article  Google Scholar 

  35. D. Charmot, P. Corpart, H. Adam, S.Z. Zard, T. Biadatti, G. Bouhadir, G. Macromol. Symp. 150, 23 (2000)

    Google Scholar 

  36. D. Bendejacq, V. Ponsinet, M. Joanicot, Y.-L. Loo, R.A. Register, Macromolecules 35, 6645 (2002)

    Article  Google Scholar 

  37. D. Bendejacq, V. Ponsinet, M. Joanicot, C. Basire, J. Lal, submitted

  38. A. Guinier, G. Fournet, Small-Angle Scattering of X-Rays (Wiley & Sons: New York, 1955)

  39. J.N. Israëlachvili, Intermolecular and suface forces (Academic Press, London, 1985-1992)

  40. E.B. Zhulina, O.V. Borisov, J. Chem. Phys. 107, 5952 (1997)

    Article  Google Scholar 

  41. W. Helfrich, Z. Naturforsch a 33, 305 (1978)

    Google Scholar 

  42. C.R. Safinya, E.B. Sirota, D. Roux, G.S. Smith, Phys. Rev. Lett. 62, 1134 (1989)

    Google Scholar 

  43. H.M. Harreis, A.A. Koryshev, C.N. Likos, H. Löwen, G. Sutmann, Phys. Rev. Lett. 89, 18303 (2002)

    Article  Google Scholar 

  44. H.C. Hamaker, Physica 4, 1058 (1937)

    CAS  Google Scholar 

  45. R.C. Weast, Handbook of Chemistry and Physics, 69th edn (CRC Press, Inc., Boca Raton, Florida, 1988-1989)

  46. S.T. Milner, T.A. Witten, M.E. Cates, Macromolecules 22, 853 (1989)

    Google Scholar 

  47. F. Oosawa, Polyelectrolytes (M. Dekker, New York, 1971)

  48. G.S. Manning, J. Chem. Phys. 51, 924 (1969); G.S. Manning, J. Chem. Phys. 51, 934 (1969)

    Article  Google Scholar 

  49. C. Weill, T. Lachhab, P. Moucheront, J. Phys. II France 3, 927 (1993)

    Google Scholar 

  50. A.J. Konop, R.H. Colby, Macromolecules 32, 2803 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ponsinet.

Additional information

Received: 3 November 2003, Published online: 2 March 2004

PACS:

82.35.Rs Polyelectrolytes - 68.47.Pe Langmuir-Blodgett films on solids; polymers on surfaces; biological molecules on surfaces - 81.16.Dn Self-assembly

D. Bendejacq: Present address: Rhodia, Centre de Recherche d’Aubervilliers, 52 Rue de la Haie Coq, Aubervilliers, France

M. Joanicot: Present address: Rhodia, Centre de Recherche d’Aubervilliers, 52 Rue de la Haie Coq, Aubervilliers, France

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendejacq, D., Ponsinet, V. & Joanicot, M. Water-dispersed lamellar phases of symmetric poly(styrene)-block-poly(acrylic acid) diblock copolymers: Model systems for flat dense polyelectrolyte brushes. Eur. Phys. J. E 13, 3–13 (2004). https://doi.org/10.1140/epje/e2004-00035-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epje/e2004-00035-2

Keywords

Navigation