Skip to main content

Advertisement

Log in

Chaotic Einstein–Podolsky–Rosen pairs, measurements and time reversal

  • Regular Article – Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

This article has been updated

Abstract

We consider a situation when evolution of an entangled Einstein–Podolsky–Rosen (EPR) pair takes place in a regime of quantum chaos being chaotic in the classical limit. This situation is studied on an example of chaotic pair dynamics described by the quantum Chirikov standard map. The time evolution is reversible even if a presence of small errors breaks time reversal of classical dynamics due to exponential growth of errors induced by exponential chaos instability. However, the quantum evolution remains reversible since a quantum dynamics instability exists only on a logarithmically short Ehrenfest time scale. We show that due to EPR pair entanglement a measurement of one particle at the moment of time reversal breaks exact time reversal of another particle which demonstrates only an approximat time reversibility. This result is interpreted in the framework of the Schmidt decomposition and Feynman path integral formulation of quantum mechanics. The time reversal in this system has already been realized with cold atoms in kicked optical lattices in absence of entanglement and measurements. On the basis of the obtained results, we argue that the experimental investigations of time reversal of chaotic EPR pairs are within reach of present cold atom capabilities.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All results and data are presented in this manuscript and Supporting Material.]

Change history

  • 31 October 2021

    ESM of this article updated.

References

  1. A. Einstein, B. Podolsky, N. Rosen, Can quantum-mechanical description of physical reality be complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. E. Schödinger, Die gegenwärtige situation in der quantenmechanik, 23, 807-812, 823-828, 844-849 (1935) [English translation J.D. Trimmer, The present situation in quantum mechanics: a translation of Schrödinger’s “cat paradox” paper, Proceedings of American Philosophical Society 124, 323-338 (1980)]

  3. M.A. Nielson, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge UK, 2000)

    Google Scholar 

  4. I. Bengtsson, K. Zyczkowski, Geometry of Quantum States (An Introduction to Quantum Entanglement ) (Cambridge University Press, Cambridge UK, 2017)

    Book  Google Scholar 

  5. I.H. Deutsch, Harnessing the power of the second quantum revolution. PRX Quantum 1, 020101 (2020)

    Article  Google Scholar 

  6. M.D. Reid, P.D. Drummond, W.P. Bowen, E.G. Cavalcanti, P.K. Lam, H.A. Bachor, U.L. Andersen, G. Leuchs, Colloquium: The Einstein-Podolsky-Rosen paradox: from concepts to applications. Rev. Mod. Phys. 81, 1727 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 2010)

    Book  Google Scholar 

  8. V. Arnold, A. Avez, Ergodic Problems in Classical Mechanics (Benjamin, NY, 1968)

    MATH  Google Scholar 

  9. I.P. Cornfeld, S.V. Fomin, Y.G. Sinai, Ergodic Theory (Springer-Verlag, Berlin, 1982)

    Book  Google Scholar 

  10. B.V. Chirikov, A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Lichtenberg, M. Lieberman, Regular and Chaotic Dynamics (Springer, New York, NY, USA, 1992)

    Book  Google Scholar 

  12. L. Boltzmann, Weitere Studien uber das Warmegleichgewicht unter Gasmolekulen. Wiener Berichte 66, 275 (1872)

    MATH  Google Scholar 

  13. J. Loschmidt, Uber den Zustand des Warmegleichgewichts eines Systems von Korpern mit Rucksicht auf die Schwerkraft; II-73; Sitzungsberichte der Akademie der Wissenschaften, Wien, Austria, p. 128 (1876)

  14. L. Boltzmann, Uber die Beziehung eines Allgemeine Mechanischen Satzes zum Zweiten Haupsatze der Warmetheorie; II-75; Sitzungsberichte der Akademie der Wissenschaften: Wien, Austria, p. 67 (1877)

  15. J.E. Mayer, M. Goeppert-Mayer, Statistical Mechanics (Wiley, N.Y., 1977)

    MATH  Google Scholar 

  16. E. Schrödinger, Uber die Umkehrung der Naturgesetze. Sitzungsberichte der preussischen Akademie der Wissenschaften, physikalische mathematische Klasse 8(9), 144 (1931)

    MATH  Google Scholar 

  17. R. Chetrite, P. Muratore-Ginanneschi, and K. Schwieger, E. Schrödinger’s 1931 paper “On the Reversal of the Laws of Nature” [“Uber die Umkehrung der Naturgesetze”, Sitzungsberichte der preussischen Akademie der Wissenschaften, physikalische mathematische Klasse, 8 N9 144-153], arXiv:2105.12617 [physics.hist-ph] (2021)

  18. A.N. Kolmogorov, Zur Umkehrbarkeit der statistischen Naturgesetze. Mathematische Annalen 113, 766 (1937)

    Article  MathSciNet  Google Scholar 

  19. B.V. Chirikov, F.M. Izrailev, and D.L. Shepelyansky, Dynamical stochasticity in classical and quantum mechanics, Sov. Sci. Rev. 2C, 209 (1981) [Sec. C-Math. Phys. Rev., Ed. S.P.Novikov, 2, Harwood Acadedmic Publisher, Chur, Switzerland (1981)]

  20. D.L. Shepelyanskii, Dynamical stochasticity in nonlinear quantum systems. Theor. Math. Phys. 49, 925 (1981)

    Article  MathSciNet  Google Scholar 

  21. B.V. Chirikov, F.M. Izrailev, D.L. Shepelyansky, Quantum chaos: localization vs. ergodicity. Physica D 33, 77 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. D. Shepelyansky, Ehrenfest time and chaos. Scholarpedia 15(9), 55031 (2020)

    Article  ADS  Google Scholar 

  23. D.L. Shepelyansky, Some statistical properties of simple classically stochastic quantum systems. Physica D 8, 208 (1983)

    Article  ADS  Google Scholar 

  24. B. Chirikov, D. Shepelyansky, Chirikov standard map. Scholarpedia 3(3), 3550 (2008)

    Article  ADS  Google Scholar 

  25. F.L. Moore, J.C. Robinson, C.F. Bharucha, B. Sundaram, M.G. Raizen, Atom optics realization of the quantum \(\delta \)-kicked rotor. Phys. Rev. Lett. 75, 4598 (1995)

    Article  ADS  Google Scholar 

  26. J. Chabe, G. Lemarie, B. Gremaud, D. Delande, P. Szirftgiser, J.C. Garreau, Experimental observation of the Anderson metal-insulator transition with atomic matter waves. Phys. Rev. Lett. 101, 255702 (2008)

    Article  ADS  Google Scholar 

  27. P.W. Anderson, Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  28. S. Fishman, D.R. Grempel, R.E. Prange, Chaos, quantum recurrences, and Anderson localization. Phys. Rev. Lett. 49, 509 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Fishman, Anderson localization and quantum chaos maps. Scholarpedia 5(8), 9816 (2010)

    Article  ADS  Google Scholar 

  30. D.L. Shepelyansky, Localization of diffusive excitation in multi-level systems. Physica D 28, 103 (1987)

    Article  ADS  Google Scholar 

  31. J. Martin, B. Georgeot, D.L. Shepelyansky, Cooling by time reversal of atomic matter waves. Phys. Rev. Lett. 100, 044106 (2008)

    Article  ADS  Google Scholar 

  32. A. Ullah, M.D. Hoogerland, Experimental observation of Loschmidt time reversal of a quantum chaotic system. Phys. Rev. E 83, 046218 (2011)

    Article  ADS  Google Scholar 

  33. E Schmidt, Zur Theorie der linearen und nicht-linearen integralgleichungen, Math. Ann. 63, 433 (1907); English translation: G.W. Stewart, FREDHOLM, HILBERT, SCHMIDT: Three Fundamental Papers on Integral Equations Translated with commentary by G.W.Stewart, Available: http://www.umiacs.umd.edu/~stewart/FHS.pdf (Retrieved January 2021)

  34. M.V. Fedorov, N.I. Miklin, Schmidt modes and entanglement. Contemp. Phys. 55(2), 94 (2014)

    Article  ADS  Google Scholar 

  35. R.P. Feynman, Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys. 20(2), 367 (1948)

    Article  ADS  MathSciNet  Google Scholar 

  36. K.M. Frahm, R. Fleckinger, D.L. Shepelyansky, Quantum chaos and random matrix theory for fidelity decay in quantum computations with static imperfections. Eur. Phys. J. D 29, 139 (2004)

    Article  ADS  Google Scholar 

  37. S.-J. Chang, K.-J. Shi, Evolution and exact eigenstates of a resonant quantum system. Phys. Rev. A 34, 7 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Derode, P. Roux, M. Fink, Robust acoustic time reversal with high-order multiple scattering. Phys. Rev. Lett. 75, 4206 (1995)

    Article  ADS  Google Scholar 

  39. J. de Rosny, A. Tourin, M. Fink, Coherent backscattering of an elastic wave in a chaotic cavity. Phys. Rev. Lett. 84, 1693 (2000)

    Article  ADS  Google Scholar 

  40. F. Borselli, M. Maiwoger, T. Zhang, P. Haslinger, V. Mukherjee, A. Negretti, S. Montangero, T. Calarco, I. Mazets, M. Bonneau, J. Schmiedmayer, Two-particle interference with double twin-atom beams. Phys. Rev. Lett. 126, 083603 (2021)

  41. J. Martin, B. Georgeot, D.L. Shepelyansky, Time reversal of Bose-Einstein condensates. Phys. Rev. Lett. 101, 074102 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported in part through the grant NANOX \(N^o\) ANR-17-EURE-0009, (project MTDINA) in the frame of the Programme des Investissements d’Avenir, France; the work is also done as a part of the ANR France project OCTAVES. This work was granted access to the HPC resources of CALMIP (Toulouse) under the allocation 2021-P0110.

Author information

Authors and Affiliations

Authors

Contributions

All authors equally contributed to this work.

Corresponding author

Correspondence to Dima L. Shepelyansky.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 738 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frahm, K.M., Shepelyansky, D.L. Chaotic Einstein–Podolsky–Rosen pairs, measurements and time reversal. Eur. Phys. J. D 75, 277 (2021). https://doi.org/10.1140/epjd/s10053-021-00274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-021-00274-6

Navigation