Skip to main content

Advertisement

Log in

On the application of few layer \(\hbox {Ti}_{3}\hbox {C}_{2}\) MXene on fiber optic SPR sensor for performance enhancement

  • Regular Article - Optical Phenomena and Photonics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A surface plasmon resonance (SPR) based optical fiber sensor, employing few layers of \(\hbox {Ti}_{3}\hbox {C}_{2}\) MXene on a thin gold (Au) film to enhance the sensitivity of the sensor is theoretically proposed. The detection accuracy (DA) and the figure of merit (FOM), the two other important performance parameters, have also been assessed for the proposed configuration. Moreover, a comparative investigation of \(\hbox {Ti}_{3}\hbox {C}_{2}\) MXene with transition metal dichalcogenide (TMDC) materials such as \(\hbox {MoS}_{2}\), \(\hbox {MoSe}_{{2}}\) and \(\hbox {WS}_{{2}}\) coated over Au film is also carried out. The sensor configuration with fiber core/Au layer/few layer \(\hbox {Ti}_{3}\hbox {C}_{2}\) MXene comes out to be most sensitive when compared with the analogous configuration having TMDC materials instead of \(\hbox {Ti}_{3}\hbox {C}_{2}\) MXene. The proposed sensor configuration shows up to 49% enhancement in the sensitivity by using few layer \(\hbox {Ti}_{3}\hbox {C}_{2}\) MXene. Thus, present work divulges potential applications of few layer \(\hbox {Ti}_{3}\hbox {C}_{2}\) MXene which comes out to be a promising chemical and bio-sensing material. It is believed that the use of few layer \(\hbox {Ti}_{3}\hbox {C}_{2}\) MXene could find favorable applications in the designing of high sensitivity SPR based refractive index sensors.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All the data generated/analyzed in this study is included in this article itself.]

References

  1. J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462–493 (2008)

    Article  Google Scholar 

  2. J.F. Masson, Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sensors 2(1), 16–30 (2017)

    Article  Google Scholar 

  3. Y. Xu, L. Wu, L.K. Ang, \(\text{ MoS}_{2}\) based highly sensitive near-infrared surface plasmon resonance refractive index sensor. IEEE J. Sel. Top. Quant. Electron. 25(2), 1–7 (2018)

    Article  Google Scholar 

  4. R.C. Jorgenson, S.S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuat. B Chem. 12(3), 213–220 (1993)

    Article  Google Scholar 

  5. A. Sharma, R. Jha, B. Gupta, Fiber-optic sensors based on surface plasmon resonance: a comprehensive review. IEEE Sens. J. 7(8), 1118–1129 (2007)

    Article  ADS  Google Scholar 

  6. T. Hu, Y. Zhao, A.ning Song, Fiber optic SPR sensor for refractive index and temperature measurement based on MMF-FBG-MMF structure. Sens. Actuat. B Chem. 237, 521–525 (2016)

    Article  Google Scholar 

  7. R.D. Harris, J.S. Wilkinson, Waveguide surface plasmon resonance sensors. Sens. Actuat. B Chem. 29(1–3), 261–267 (1995)

    Article  Google Scholar 

  8. G. An, S. Li, X. Yan, X. Zhang, Z. Yuan, H. Wang, Y. Zhang, X. Hao, Y. Shao, Z. Han, Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance. Plasmonics 12(2), 465–471 (2017)

    Article  Google Scholar 

  9. A.A. Rifat, G.A. Mahdiraji, Y.M. Sua, R. Ahmed, Y.G. Shee, F.R.M. Adikan, Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor. Opt. Exp. 24(3), 2485–2495 (2016)

    Article  ADS  Google Scholar 

  10. E. Kretschmann, H. Raether, Radiative decay of non-radiative surface plasmons excited by light. Z. Naturforschung A 23(12), 2135–2136 (1968)

    Article  ADS  Google Scholar 

  11. Vikas, R.K. Verma, Sensitivity enhancement of a lossy mode resonance based tapered fiber optic sensor with an optimum taper profile. J. Phys. D Appl. Phys. 51(41), 415302 (2018)

  12. Y. Wang, S. Meng, Y. Liang, L. Li, W. Peng, Fiber-optic surface plasmon resonance sensor with multi-alternating metal layers for biological measurement. Photon. Sens. 3(3), 202–207 (2013)

    Article  ADS  Google Scholar 

  13. A.K. Sharma, B.D. Gupta, On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors, J. Appl. Phys. 101(9), (2007)

  14. M.B. Hossain, T.B.A. Akib, L.F. Abdulrazak, M.M. Rana, Numerical modeling of graphene coated fiber optic surface plasmon resonance biosensor for BRCA1 and BRCA2 genetic breast cancer detection. Opt. Eng. 58(3), 037104 (2019)

    Article  ADS  Google Scholar 

  15. L. Wu, H.S. Chu, W.S. Koh, E.P. Li, Highly sensitive graphene biosensors based on surface plasmon resonance. Opt. Exp. 18(14), 14395–14400 (2010)

    Article  ADS  Google Scholar 

  16. T. Srivastava, R. Jha, Black phosphorus: a new platform for gaseous sensing based on surface plasmon resonance. IEEE Photon. Technol. Lett. 30(4), 319–322 (2018)

    Article  ADS  Google Scholar 

  17. Vikas, R. K. Verma, Design considerations of a surface plasmon resonance (SPR) based tapered fiber optic bio-sensing probe with graphene-\(\text{ MoS}_{2}\) over layers, Optik - Int. J. Light Electron Opti. 180, 330–343, (2019)

  18. Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.Q. Dingh, J. Qian, S. He, J. Qu, P. Coquet, K.T. Yong, Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep. 6, 28190 (2016)

    Article  ADS  Google Scholar 

  19. H. Wang, H. Zhang, J. Dong, S. Hu, W. Zhu, W. Qiu, H. Lu, J. Yu, H. Guan, S. Gao, Z. Li, W. Liu, M. He, J. Zhang, Z. Chen, Y. Luo, Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (\(\text{ WS}_{{2}}\)) nanosheets overlayer. Photon. Res. 6(6), 485–491 (2018)

    Article  Google Scholar 

  20. J. N. Nur, K. Nahar Shushama, F. Asrafy, M. H. Hasan Hasib, M. A. Goffar Khan, Sensitivity enhancement of surface plasmon resonance biosensor using black phosphorus and WSe\(_{{2}}\), 1st International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST 2019), pp. 576-580, (2019)

  21. K. Huang, Z. Li, J. Lin, G. Han, P. Huang, Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47(14), 5109–5124 (2018)

    Article  Google Scholar 

  22. Q. Tang, Z. Zhou, Graphene-analogous low-dimensional materials. Prog. Mater. Sci. 58(8), 1244–1315 (2013)

    Article  Google Scholar 

  23. M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 9921005 (2014)

    Google Scholar 

  24. U. Yorulmaz, A. Özden, N. K. Perkgöz, F. Ay, C. Sevik, Vibrational and mechanical properties of single layer MXene structures: a first-principles investigation, Nanotechnology, 27,(33), (2016)

  25. J.C. Lei, X. Zhang, Z. Zhou, Recent advances in MXene: preparation, properties, and applications. Front. Phys. 10(3), 276–286 (2015)

    Article  ADS  Google Scholar 

  26. R.B. Rakhi, B. Ahmed, M.N. Hedhili, D.H. Anjum, H.N. Alshareef, Effect of postetch annealing gas composition on the structural and electrochemical properties of \({{\rm Ti}}_{3}{{\rm CT}}_{{\rm X}}\) MXene Electrodes for Supercapacitor Applications. Chem. Mater. 27(15), 5314–5323 (2015)

    Article  Google Scholar 

  27. A. Lipatov, M. Alhabeb, M.R. Lukatskaya, A. Boson, Y. Gogotsi, A. Sinitskii, Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer \(\text{ Ti}_{3}\text{ C}_{2}\) MXene flakes. Adv. Electron. Mater. 2(12), 1600255 (2016)

    Article  Google Scholar 

  28. M.W. Barsoum, The M\(_{{\rm N}+1}{{\rm AX}}_{{\rm N}}\) phases: a new class of solids. Prog. Solid State Chem. 28(1–4), 201–281 (2000)

    Article  Google Scholar 

  29. B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B.C. Hosler, L. Hultman, P.R.C. Kent, Y. Gogotsi, M.W. Barsoum, Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015)

    Article  Google Scholar 

  30. M.A. Hope, A.C. Forse, K.J. Griffith, M.R. Lukatskaya, M. Ghidiu, Y. Gogotsi, C.P. Grey, NMR reveals the surface functionalisation of \(\text{ Ti}_{3}\text{ C}_{2}\) MXene. Phys. Chem. Chem. Phys. 18(7), 5099–5102 (2016)

    Article  Google Scholar 

  31. B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017)

    Article  ADS  Google Scholar 

  32. S.J. Kim, H.J. Koh, C.E. Ren, O. Kwon, K. Maleski, S.Y. Cho, B. Anasori, C.K. Kim, Y.K. Choi, J. Kim, Y. Gogotsi, H.T. Jung, Metallic \(\text{ Ti}_{3}\text{ C}_{2}\)T\(_{{\rm x}}\) MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12(2), 986–993 (2018)

    Article  Google Scholar 

  33. B. Xu, M. Zhu, W. Zhang, Z. Zhen, Z. Pei, Q. Xue, C. Zhi, P. Shi, Ultrathin MXene-micropattern-based field-effect transistor for probing neural activity. Adv. Mater. 28(17), 3333–3339 (2016)

    Article  Google Scholar 

  34. L. Lorencova, T. Bertok, E. Dosekova, A. Holazova, D. Paprckova, A. Vikartovska, V. Sasinkova, J. Filip, P. Kasak, M. Jerigova, D. Velic, K.A. Mahmoud, J. Tkac , Electrochemical performance of \(\text{ Ti}_{3}\text{ C}_{2}\)T\(_{\rm x}\)MXene in aqueous media: towards ultrasensitive H\(_{{2}}\)O\(_{{2}}\) sensing, Electrochim. Acta 235, 471–479 (2017)

  35. Y. Fang, X. Yang, T. Chen, G. Xu, m Liu, J. Liu, Y. Xu, Two-dimensional titanium carbide (MXene)-based solid-state electrochemiluminescent sensor for label-free single-nucleotide mismatch discrimination in human urine. Sens. Actuat. B Chem. 263, 400–407 (2018)

    Article  Google Scholar 

  36. F. Wang, C.H. Yang, M. Duan, Y. Tang, J.F. Zhu, \({{\rm TiO}}_{{2}}\) nanoparticle modified organ-like \(\text{ Ti}_{3}\text{ C}_{2}\)T\(_{{\rm x}}\) MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances. Biosens. Bioelectron. 74, 1022–1028 (2015)

    Article  Google Scholar 

  37. X.F. Yu, Y.C. Li, J.B. Cheng, Z.B. Liu, Q.Z. Li, W.Z. Li, X. Yang, B. Xiao, Monolayer \({{\rm Ti}}_{{2}}{{\rm Co}}_{{2}}\): a promising candidate for \({{\rm NH}}_{3}\) sensor or capturer with high sensitivity and selectivity. ACS Appl. Mater. Interf. 7(24), 13707–13713 (2015)

    Article  Google Scholar 

  38. L. Wu, Q. You, Y. Shan, S. Gan, Y. Zhao, X. Dai, Y. Xiang, Few-layer \(\text{ Ti}_{3}\text{ C}_{2}{{\rm T}}_{{\rm x}}\) MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity. Sens. Actuat. B Chem. 277, 210–215 (2018)

    Article  Google Scholar 

  39. X. Dai, C. Song, C. Qiu, L. Wu, Y. Xiang, Theoretical Investigation of Multilayer \(\text{ Ti}_{3}\text{ C}_{2}{{\rm T}}_{{\rm x}}\) MXene as the plasmonic material for surface plasmon resonance sensors in near infrared region. IEEE Sens. J. (2019)

  40. Y. Xu, Y.S. Ang, L. Wu, L.K. Ang, High sensitivity surface plasmon resonance sensor based on two-dimensional MXene and transition metal dichalcogenide: A theoretical study. Nanomaterials 9(2), 1–11 (2019)

    Article  Google Scholar 

  41. A.M. Shrivastav, S.K. Mishra, B.D. Gupta, Fiber optic SPR sensor for the detection of melamine using molecular imprinting. Sens. Actuat. B Chem. 212, 404–410 (2015)

    Article  Google Scholar 

  42. A.M. Shrivastav, S.K. Mishra, B.D. Gupta, Surface plasmon resonance-based fiber optic sensor for the detection of ascorbic acid utilizing molecularly imprinted polyaniline film. Plasmonics 10, 1852–1861 (2015)

    Article  Google Scholar 

  43. S. Singh, S.K. Mishra, B.D. Gupta, SPR based fiber optic biosensor for phenolic compounds using immobilization of tyrosinase in polyacrylamide gel. Sens. Actuat. B Chem. 186, 388–395 (2013)

    Article  Google Scholar 

  44. A.M. Shrivastav, S.P. Usha, B.D. Gupta, Highly sensitive and selective erythromycin nanosensor employing fiber optic SPR/ERY imprinted nanostructure: Application in milk and honey. Biosens. Bioelectron. 90, 516–524 (2017)

    Article  Google Scholar 

  45. G. Y. Gou, M. L. Jin, B. J. Lee, H. Tian, F. Wu, Y. T. Li, Z. Y. Ju, J. M. Jian, X. S. Geng, J. Ren, Y. H. Yei, G. Y. Jiang, Y. C. Qiao, X.S. Li, S.J. Kim, M. Gao, H.T Jung, C.W. Ahn, Y. Yang, T. L. Ren, Flexible two dimensional \(\text{ Ti}_{{3}}\text{ C}_{{2}}\) Mxene films as thermoacoustic Devices, ACS Nano, 13, 12613–12620, (2019)

  46. G. R. Berdiyorov, Optical properties of functionalized \(\text{ Ti}_{3}\text{ C}_{2}\)T\(_{{2}}\) (T \(=\) F, O, OH) MXene: First-principles calculations, AIP Adv. 6(5), (2016)

  47. A.K. Mishra, S.K. Mishra, R.K. Verma, Graphene and beyond Graphene \(\text{ MoS}_{2}\): a new window in surface-plasmon-resonance-based fiber optic sensing. J. Phys. Chem. C 120(5), 2893–2900 (2016)

    Article  Google Scholar 

  48. A.R. Beal, H.P. Hughes, Kramers-Kronig analysis of the reflectivity spectra of 2H-\(\text{ MoS}_{2}\), \(\text{2H-MoSe }_{{2}}\) and \(\text{2H-MoTe }_{{2}}\). J. Phys. C: Solid State Phys. 12(5), 881–890 (1979)

    Article  ADS  Google Scholar 

  49. G.H. Jung, S.J. Yoo, Q.H. Park, Measuring the optical permittivity of twodimensional materials without a priori knowledge of electronic transitions. Nanophotonics 8(2), 263–270 (2018)

    Article  Google Scholar 

  50. M.S. Rahman, M.S. Anower, L.F. Abdulrazak, Modeling of a fiber optic SPR biosensor employing Tin Selenide (SnSe) allotropes. Result. Phys. 15(August), 102623 (2019)

    Article  Google Scholar 

  51. B.D. Gupta, A. Sharma, C.D. Singh, Evanescent wave absorption sensors based on uniform and tapered fibers: a comparitive study of their sensitivities. Int. J. Optoelectron. 8, 409 (1993)

  52. O. Salihoglu, S. Balci, C. Kocabas, Plasmon-polaritons on graphene-metal surface and their use in biosensors, Appl. Phys. Lett. 100(21), (2012)

  53. B.D. Gupta, C.D. Singh, A. Sharma, Fiber optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region. Opt. Eng. 33(6), 1864–1869 (1994)

    Article  ADS  Google Scholar 

  54. S.H. Choi, Y.L. Kim, K.M. Byun, Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt. Exp. 19(2), 458 (2011)

    Article  ADS  Google Scholar 

  55. K.N. Shushama, M.M. Rana, R. Inum, M.B. Hossain, Graphene coated fiber optic surface plasmon resonance biosensor for the DNA hybridization detection: Simulation analysis. Opt. Commun. 383, 186–190 (2017)

    Article  ADS  Google Scholar 

  56. M.S. Rahman, S.S. Noor, M.S. Anower, L.F. Abdulrazak, M.M. Rahman, K.A. Rikita, Design and numerical analysis of a graphene-coated fiber-optic SPR biosensor using tungston disulphide. Photon. Nanostruct. Fund. Appl. 33, 29–35 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author Mr. Vikas would like to acknowledge Department of Science and Technology (DST) INDIA for funding INSPIRE fellowship (Registration no- IF170543). This work is partially supported by DST SERB CRG/2020/00593 India.

Author information

Authors and Affiliations

Authors

Contributions

Mr. Vikas carried out the numerical simulation and wrote the manuscript with support of Dr. R.K. Verma. Both the authors have equally contributed to the analysis of the results and preparation of the manuscript.

Corresponding author

Correspondence to R. K. Verma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vikas, Verma, R.K. On the application of few layer \(\hbox {Ti}_{3}\hbox {C}_{2}\) MXene on fiber optic SPR sensor for performance enhancement. Eur. Phys. J. D 75, 5 (2021). https://doi.org/10.1140/epjd/s10053-020-00020-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-020-00020-4

Navigation