Skip to main content
Log in

Quantum computer with cold ions in the Aubry pinned phase

  • Regular Article
  • Quantum Information
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

It is proposed to modify the Cirac-Zoller proposal of quantum computer with cold ions in a global oscillator trap potential by adding a periodic potential with an incommensurate average ratio of number of ions to number of periods being order of unity. With the increase of the periodic potential amplitude the system enters in the Aubry pinned phase characterized by quasi-frozen positions of ions and a gap of their first phonon excitations becomes independent of number of ions. This gives hopes that this quantum computer will be really scalable. It is argued that the usual single- and two-qubit gates can be realized between the nearby ions in the Aubry phase. The possibilities of experimental realizations of a periodic potential with microtrap arrays or optical lattices are discussed. It is pointed that the disorder of distances between microtraps with one ion per trap can lead to the Anderson localization of phonon modes with interesting possibilities for ion quantum computing.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Nielsen, I. Chuang, Quantum computation and quantum information (Cambridge University Press, Cambridge, UK, 2000)

  2. J.I. Cirac, P. Zoller, Phys. Rev. Lett. 74, 4091 (1995)

    Article  ADS  Google Scholar 

  3. G. Birkl, S. Kassner, H. Walther, Nature 357, 310 (1992)

    Article  ADS  Google Scholar 

  4. C. Monroe, D.M. Meekhof, B.E. King, W.N. Itano, D.J. Wineland, Phys. Rev. Lett. 75, 4714 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  5. C.A. Sackett, D. Kielpinski, B.E. King, C. Langer, V. Meyer, C.J. Myatt, M. Rowe, Q.A. Turchette, W.M. Itano, D.J. Wineland, C. Monroe, Nature 404, 256 (2000)

    Article  ADS  Google Scholar 

  6. B. DeMarco, A. Ben-Kish, D. Leibfried, V. Meyer, M. Rowe, B.M. Jelenkovic, W.M. Itano, J. Britton, C. Langer, T. Rosenband, D.J. Wineland, Phys. Rev. Lett. 89, 267901 (2002)

    Article  ADS  Google Scholar 

  7. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenkovic, C. Langer, T. Rosenband, D.J. Wineland, Nature 422, 412 (2003)

    Article  ADS  Google Scholar 

  8. S. Gulde, H. Haffner, M. Riebe, G. Lancaster, C. Becher, J. Eschner, F. Schmidt-Kaler, I.L. Chuang, R. Blatt, Proc. R. Soc. London A 361, 1363 (2003)

    Article  ADS  Google Scholar 

  9. F. Schmidt-Kaler, H. Haffner, M. Riebe, S. Gulde, G.P.T. Lancaster, T. Deuschle, C. Becher, C.F. Roos, J. Eschner, R. Blatt, Nature 422, 408 (2003)

    Article  ADS  Google Scholar 

  10. C.F. Roos, M. Riebe, H. Haffner, W. Hansel, J. Benhelm, G.P.T. Lancaster, C. Becher, F. Schmidt-Kaler, R. Blatt, Science 304, 1478 (2004)

    Article  ADS  Google Scholar 

  11. R. Blatt, D. Wineland, Nature 453, 1008 (2008)

    Article  ADS  Google Scholar 

  12. M. Johanning, A.F. Varon, C. Wunderlich, J. Phys. B: At., Mol. Opt. Phys. 42, 154009 (2009)

    Article  ADS  Google Scholar 

  13. R. Blatt, C.F. Roos, Nat. Phys. 8, 277 (2012)

    Article  Google Scholar 

  14. D.J. Wineland, Rev. Mod. Phys. 85, 1103 (2013)

    Article  ADS  Google Scholar 

  15. C.D. Bruzewicz, J. Chiaverini, R. McConnel, J.M. Sage, https://doi.org/arXiv:1904.04178 (2019)

  16. G. Pagano, P.W. Hess, H.B. Kaplan, W.L. Tan, P. Richerme, P. Becker, A. Kyprianidis, J. Zhang, E. Birckelbaw, M.R. Hernandez, Y. Wu, C. Monroe, https://doi.org/arXiv:1802.03118 (2018)

  17. Y. Nam, J.-S. Chen, N.C. Pisenti, K. Wright, C. Delaney, D. Maslov, K.R. Brown, S. Allen, J.M. Amini, J. Apisdorf, K.M. Beck, A. Blinov, V. Chaplin, M. Chmielewski, C. Collins, S. Debnath, A.M. Ducore, K.M. Hudek, M. Keesan, S.M. Kreikemeier, J. Mizrahi, P. Solomon, M. Williams, J.D. Wong-Campos, C. Monroe, J. Kim, https://doi.org/arXiv:1902.10171 (2019)

  18. K.A. Landsman, C. Figgatt, T. Schuster, N.M. Linke, B. Yoshida, N.Y. Yao, C. Monroe, Nature 567, 61 (2019)

    Article  ADS  Google Scholar 

  19. K. Wright, K.M. Beck, S. Debnath, J.M. Amini, Y. Nam, N. Grzesiak, J.-S. Chen, N.C. Pisenti, M. Chmielewski, C. Collins, K.M. Hudek, J. Mizrahi, J.D. Wong-Campos, S. Allen, J. Apisdorf, P. Solomon, M. Williams, A.M. Ducore, A. Blinov, S.M. Kreikemeier, V. Chaplin, M. Keesan, C. Monroe, J. Kim, https://doi.org/arXiv:1903.08181 (2019)

  20. O. Shehab, K. Landsman, Y. Nam, D. Zhu, N.M. Linke, M. Keesan, R.C. Pooser, C. Monroe, https://doi.org/arXiv:1904.04338 (2019)

  21. T. Brydges, A. Elben, P. Jurcevic, B. Vermersch, C. Maier, B.P. Lanyon, P. Zoller, R. Blatt, C.F. Roos, Science 364, 260 (2019)

    ADS  Google Scholar 

  22. D. Kielpinski, C. Monroe, D.J. Wineland, Nature 417, 709 (2002)

    Article  ADS  Google Scholar 

  23. B. Lekitsch, S. Weidt, A.G. Fowler, K. Molmer, S.J. Devitt, C. Wunderlich, W.K. Hensinger, Sci. Adv. 3, e1601540 (2017)

    Article  ADS  Google Scholar 

  24. S. Aubry, Physica D 7, 240 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  25. I. Garcia-Mata, O.V. Zhirov, D.L. Shepelyansky, Eur. Phys. J. D 41, 325 (2007)

    Article  ADS  Google Scholar 

  26. T. Pruttivarasin, M. Ramm, I. Talukdar, A. Kreuter, H. Haffner, New J. Phys. 13, 075012 (2011)

    Article  ADS  Google Scholar 

  27. A. Bylinskii, D. Gangloff, V. Vuletic, Science 348, 1115 (2015)

    Article  ADS  Google Scholar 

  28. A. Bylinskii, D. Gangloff, I. Countis, V. Vuletic, Nat. Mater 11, 717 (2016)

    Article  ADS  Google Scholar 

  29. J. Kiethe, R. Nigmatullin, D. Kalincev, T. Schmirander, T.E. Mehlstaubler, Nat. Commun. 8, 15364 (2017)

    Article  ADS  Google Scholar 

  30. M.Y. Zakharov, D. Demidov, D.L. Shepelyansky, Phys. Rev. B 99, 155416 (2019)

    Article  ADS  Google Scholar 

  31. O.V. Zhirov, J. Lages, D.L. Shepelyansky, https://doi.org/arXiv:1901.09588 (2019)

  32. O.V. Zhirov, D.L. Shepelyansky, Europhys. Lett. 103, 68008 (2013)

    Article  ADS  Google Scholar 

  33. B.V. Chirikov, Phys. Rep. 52, 263 (1979)

    Article  ADS  Google Scholar 

  34. A.J. Lichtenberg, M.A. Lieberman, Regular and chaotic dynamics (Springer, Berlin, 1992)

  35. J.D. Meiss, Rev. Mod. Phys. 64, 795 (1992)

    Article  ADS  Google Scholar 

  36. O.M. Braun, Yu.S. Kivshar, The Frenkel-kontorova model: concepts, methods, applications (Springer-Verlag, Berlin, 2004)

  37. B. Chirikov, D. Shepelyansky, Scholarpedia 3, 3550 (2008)

    Article  ADS  Google Scholar 

  38. N. Mezard, G. Parisim, M.A. Virasoro, Spin glass theory and beyond (World Scientific, Singapore, 1997)

  39. A. Sorensen, K. Molmer, Phys. Rev. Lett. 82, 1971 (1999)

    Article  ADS  Google Scholar 

  40. J.I. Cirac, P. Zoller, Nature 404, 579 (2000)

    Article  ADS  Google Scholar 

  41. S. Aubry, G. Andre, Ann. Israel Phys. Soc. 3, 133 (1980)

    Google Scholar 

  42. G. Roati, C. D‘Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Modugno, M. Inguscio, Nature 453, 895 (2008)

    Article  ADS  Google Scholar 

  43. M. Schreiber, S.S. Hodgman, P. Bordia, H. Luschen, M.H. Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch, Science 349, 842 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  44. T. Fogarty, H. Landa, C. Cormick, G. Morigi, Phys. Rev. A 94, 023844 (2016)

    Article  ADS  Google Scholar 

  45. G.-D. Lin, S.-L. Zhu, R. Islam, K. Kim, M.-S. Chang, S. Korenblit, C. Monroe, L.-M. Duan, EPL 86, 60004 (2009)

    Article  ADS  Google Scholar 

  46. M. Kumph, M. Brownnutt, R. Blatt, New J. Phys. 13, 073043 (2011)

    Article  ADS  Google Scholar 

  47. F. Hakelberg, P. Kiefer, M. Wittemer, U. Warring, T. Schaetz, https://doi.org/arXiv:1812.08552 (2018)

  48. Ch. Schneider, D. Porras, T. Schaetz, Rep. Prog. Phys. 75, 024401 (2012)

    Article  ADS  Google Scholar 

  49. T. Lauprêtre, R.B. Linnet, I.D. Leroux, H. Landa, A. Dantan, M. Drewsen, Phys. Rev. A 99, 031401(R) (2019)

    Article  ADS  Google Scholar 

  50. S. Jain, I. Alonso, M. Grau, J.P. Home, https://doi.org/arXiv:1812.06755 (2018)

  51. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  52. I.M. Lifshits, S.A. Gredeskul, L.A. Pastur, Introduction to the theory of disordered systems (Wiley-Interscience, New Jersey, 1988)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dima L. Shepelyansky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shepelyansky, D.L. Quantum computer with cold ions in the Aubry pinned phase. Eur. Phys. J. D 73, 148 (2019). https://doi.org/10.1140/epjd/e2019-100105-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2019-100105-9

Navigation