Skip to main content
Log in

Magnets in an electric field: hidden forces and momentum conservation

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In 1967 Shockley and James addressed the situation of a magnet in an electric field. The magnet is at rest and contains electromagnetic momentum, but there was no obvious mechanical momentum to balance this for momentum conservation. They concluded that some sort of mechanical momentum, which they called “hidden momentum”, was contained in the magnet and ascribed this momentum to relativistic effects, a contention that was apparently confirmed by Coleman and Van Vleck. Since then, a magnetic dipole in an electric field has been considered to have this new form of momentum, but this view ignores the electromagnetic forces that arise when an electric field is applied to a magnet or a magnet is formed in an electric field. The electromagnetic forces result in the magnet-charge system gaining electromagnetic momentum and an equal and opposite amount of mechanical momentum so that it is moving in its original rest frame. This moving reference frame is erroneously taken to be the rest frame in studies that purport to show hidden momentum. Here I examine the analysis of Shockley and James and of Coleman and Van Vleck and consider a model of a magnetic dipole formed in a uniform electric field. These calculations show no hidden momentum.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Thomson, Phil. Mag. 31, 149 (1891)

    Article  Google Scholar 

  2. J.J. Thomson, Phil. Mag. 8, 331 (1904)

    Article  Google Scholar 

  3. K.T. McDonald, http://www.hep.princeton.edu/˜mcdonald/examples/thomson.pdf (2015)

  4. W. Shockley, R.P. James, Phys. Rev. Lett. 18, 876 (1967)

    Article  ADS  Google Scholar 

  5. S. Coleman, J.H.V. Vleck, Phys. Rev. 171, 1370 (1968)

    Article  ADS  Google Scholar 

  6. C.G. Darwin, Phil. Mag. 39, 537 (1920)

    Article  Google Scholar 

  7. D.J. Griffiths, Am. J. Phys. 80, 7 (2012)

    Article  ADS  Google Scholar 

  8. D. Babson et al., Am. J. Phys. 77, 826 (2009)

    Article  ADS  Google Scholar 

  9. J.D. Jackson, Classical Electrodynamics, 3rd edn. (John Wiley & Sons, New York, 1999)

  10. T.H. Boyer, Phys. Rev. E 91, 013201 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  11. W.H. Furry, Am. J. Phys. 37, 621 (1969)

    Article  ADS  Google Scholar 

  12. V. Hnizdo, Am. J. Phys. 65, 515 (1997)

    Article  ADS  Google Scholar 

  13. M. Planck, Phys. Z.S. 9, 828 (1909)

    Google Scholar 

  14. F.T. Trouton, H.R. Noble, Proc. R. Soc. 74, 132 (1903)

    Article  Google Scholar 

  15. M. von Laue, Verhandlungen der Deutschen Physikalischen Gesellschaft 13, 513i (1911)

    Google Scholar 

  16. F.R. Redfern, http://prism-redfern.org/physicsjournal/trouton-noble.pdf (2016), last accessed in January, 2017

  17. T.H. Boyer, Am. J. Phys. 83, 433 (2015)

    Article  ADS  Google Scholar 

  18. J.R. Reitz, F.J. Milford, Foundations of Electromagnetic Theory (Addison-Wesley, Reading, Massachusetts, 1960)

  19. T.H. Boyer, Phys. Rev. A 36, 5083 (1987)

    Article  ADS  Google Scholar 

  20. Y. Aharonov, P. Pearle, L. Vaidman, Phys. Rev. A 37, 4052 (1988)

    Article  ADS  Google Scholar 

  21. Y. Aharonov, A. Casher, Phys. Rev. Lett. 53, 319 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  22. L. Vaidman, Am. J. Phys. 58, 978 (1990)

    Article  ADS  Google Scholar 

  23. M. Mansuripur, Phys. Rev. Lett. 108, 193901 (2012)

    Article  ADS  Google Scholar 

  24. V. Namias, Am. J. Phys. 57, 171 (1989)

    Article  ADS  Google Scholar 

  25. D. Bedford, P. Krumm, Am. J. Phys. 54, 1036 (1986)

    Article  ADS  Google Scholar 

  26. F.R. Redfern, Phys. Scr. 91, 045501 (2016)

    Article  ADS  Google Scholar 

  27. Added in proof: It turns out that the effect of the vector potential is canceled by that of the scalar potential, but the conclusion concerning hidden momentum still holds

  28. A. Einstein, J. Laub, Ann. Phys. 331, 541 (1908)

    Article  Google Scholar 

  29. D.A.T. Vanzella, Phys. Rev. Lett. 110, 089401 (2013)

    Article  ADS  Google Scholar 

  30. S.M. Barnett, Phys. Rev. Lett. 110, 089402 (2013)

    Article  ADS  Google Scholar 

  31. P.L. Saldanha, Phys. Rev. Lett. 110, 089403 (2013)

    Article  ADS  Google Scholar 

  32. M. Khorrami, Phys. Rev. Lett. 110, 089404 (2013)

    Article  ADS  Google Scholar 

  33. D.J. Griffiths, V. Hnizdo, Am. J. Phys. 81, 570 (2013)

    Article  ADS  Google Scholar 

  34. P.L. Saldanha, J.S.O. Filho, last accessed in January, 2017 (2016)

  35. J.S.O. Filho, P.L. Saldanha, Phys. Rev. A 92, 052017 (2015)

    Article  ADS  Google Scholar 

  36. G. Spavieri, Eur. Phys. J. D 70, 263 (2016)

    Article  ADS  Google Scholar 

  37. W. Rindler, Relativity: Special, General, and Cosmological, 2nd edn. (Oxford University Press, Oxford, 2006)

  38. F.R. Redfern, http://prism-redfern.org/physicsjournal/relofsimul.pdf (2016), last accessed in February, 2017

  39. M. Mansuripur, Proc. SPIE 9548, 95480K,1 (2015)

    Article  Google Scholar 

  40. F.R. Redfern, http://prism-redfern.org/nohidden.pdf (2015), last accessed in January, 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Redfern.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Redfern, F. Magnets in an electric field: hidden forces and momentum conservation. Eur. Phys. J. D 71, 163 (2017). https://doi.org/10.1140/epjd/e2017-70263-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2017-70263-3

Keywords

Navigation