Skip to main content
Log in

Photonic gaps in one dimensional cylindrical photonic crystal that incorporates single negative materials

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this article, we theoretically study electromagnetic waves that propagate in one-dimensional cylindrical photonic crystals (1DCPC) containing single negative materials. We examine the optical properties of three gaps namely; the zero-effective phase (zero-ϕ), the zero-permittivity (zero-ε) and the zero-permeability (zero-μ). We calculate the optical reflectance for transverse electric(magnetic) TE(TM) polarizations using the transfer matrix method in the cylindrical coordinates. We study the effect of azimuthal mode number (m) and the starting radius on these gaps. The results show that the zero-μ (zero-ε) gap is found for TE(TM) polarization at frequency where μ(ε) changes its sign for m ≥ 1. The width of the gap increases by decreasing the starting radius or by increasing m, whereas the zero-ϕ gap remains invariant. In addition, we present a brief design of 1D-CPC that has a polarization-independent wide gap especially for high azimuthal mode number (m > 2). Our results can help improve the performance of microwave devices independent of the source wave polarization.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade, Photonic crystals: molding the flow of light (Princeton University, 2008)

  2. M.A. Kaliteevski, R.A. Abram, V.V. Nikolaev, G.S. Sokolovski, J. Mod. Opt. 46, 875 (1999)

    Article  ADS  Google Scholar 

  3. V.V. Nikolaev, G.S. Sokolovski, M.A. Kaliteevski, Semiconductors 33, 147 (1999)

    Article  ADS  Google Scholar 

  4. J. Scheuer, A. Yariv, J. Opt. Soc. Am. B 20, 2285 (2003)

    Article  ADS  Google Scholar 

  5. J. Scheuer, A. Yariv, Opt. Express 11, 2736 (2003)

    Article  ADS  Google Scholar 

  6. M.-S. Chen, C.-J. Wu, T.-J. Yang, Solid State Commun. 149, 1888 (2009)

    Article  ADS  Google Scholar 

  7. M.-S. Chen, C.-J. Wu, T.-J. Yang, Opt. Commun. 285, 3143 (2012)

    Article  ADS  Google Scholar 

  8. S.-P. Li, J.-P. Zhu, X.-D. Deng, T.-T. Tang, Opt. Commun. 284, 5655 (2011)

    Article  ADS  Google Scholar 

  9. C.-A. Hu, C.-J. Wu, T.-J. Yang, S.-L. Yang, Opt. Commun. 291, 424 (2013)

    Article  ADS  Google Scholar 

  10. M. Roussey, E. Descrovi, M. Häyrinen, A. Angelini, M. Kuittinen, S. Honkanen, Opt. Express 22, 27236 (2014)

    Article  ADS  Google Scholar 

  11. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968)

    Article  ADS  Google Scholar 

  12. Y.H. Chen, X.G. Wang, F.W. Ye, P.F. Lee, B.B. Hu, Appl. Phys. B: Lasers Opt. 107, 771 (2012)

    Article  ADS  Google Scholar 

  13. Y.H. Chen, W.X. Wang, Z.H. Yong, Y. Zhang, Z.F. Chen, Phys. Lett. A 376, 1396 (2012)

    Article  ADS  Google Scholar 

  14. Y. Sun, B. Edwards, A. Alù, N. Engheta, Nat. Mater. 11, 208 (2012)

    Article  ADS  Google Scholar 

  15. H. Jiang, H. Chen, H. Li, Y. Zhang, J. Zi, S. Zhu, Phys. Rev. E 69, 066607 (2004)

    Article  ADS  Google Scholar 

  16. L.G. Wang, H. Chen, S. Zhu, Phys. Rev. B 70, 245102 (2004)

    Article  ADS  Google Scholar 

  17. J. Li, L. Zhou, C.T. Chan, P. Sheng, Phys. Rev. Lett. 90, 083901 (2003)

    Article  ADS  Google Scholar 

  18. H. Jiang, H. Chen, H. Li, Y. Zhang, S. Zhu, Appl. Phys. Lett. 83, 5386 (2003)

    Article  ADS  Google Scholar 

  19. R.A. Depine, M.L. Martínez-Ricci, J.A. Monsoriu, E. Silvestre, P. Andrés, Phys. Lett. A 364, 352 (2007)

    Article  ADS  Google Scholar 

  20. S.K. Singh, J.P. Pandey, K.B. Thapa, S.P. Ojha, Solid State Commun. 143, 217 (2007)

    Article  ADS  Google Scholar 

  21. S.K. Srivastava, A. Aghajamali, Physica B 489, 67 (2016)

    Article  ADS  Google Scholar 

  22. H. Jiang, H. Chen, H. Li, Y. Zhang, J. Zi, S. Zhu, Phys. Rev. E 69, 066607 (2004)

    Article  ADS  Google Scholar 

  23. A. Mishra, S.K. Awasthi, S.K. Srivastava, U. Malaviya, S.P. Ojha, J. Opt. Soc. Am. B 28, 1416 (2011)

    Article  ADS  Google Scholar 

  24. X.H. Deng, J.T. Liu, J.R. Yuan, T.B. Wang, N.H. Liu, Eur. Phys. J. B 85, 232 (2012)

    Article  ADS  Google Scholar 

  25. S.A. El-Naggar, Opt. Eng. 52, 024602 (2013)

    Article  ADS  Google Scholar 

  26. S.A. El-Naggar, Eur. Phys. J. D 67, 54 (2013)

    Article  ADS  Google Scholar 

  27. L. Zhang, Y. Zhang, L. He, H. Li, H. Chen, Eur. Phys. J. B 62, 1 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahar A. El-Naggar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Naggar, S.A. Photonic gaps in one dimensional cylindrical photonic crystal that incorporates single negative materials. Eur. Phys. J. D 71, 11 (2017). https://doi.org/10.1140/epjd/e2016-70584-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70584-7

Keywords

Navigation