Skip to main content
Log in

Efficient ion acceleration by relativistic self-induced transparency in subwavelength targets

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We studied the effect of target thickness on relativistic self-induced transparency (RSIT) and observed that, for subwavelength targets, the corresponding threshold target density (beyond which the target is opaque to an incident laser pulse of given intensity) increases. The accelerating longitudinal electrostatic field created by RSIT from the subwavelength target is then used to accelerate the ions from a thin, low density layer behind the main target to ~100 MeV using a 6 cycle flat-top (with rise and fall of one cycle each) circularly polarized laser with peak dimensionless amplitude of 20. A suitable scaling law for optimum laser and target conditions is also deduced. We observed that, as far as energy spectrum is concerned, an extra low density layer is more advantageous than relying on target ions alone.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Bulanov, V. Khoroshkov, Plasma Phys. Rep. 28, 453 (2002)

    Article  ADS  Google Scholar 

  2. G.A. Cirrone, M. Carpinelli, G. Cuttone, S. Gammino, S.B. Jia, G. Korn, M. Maggiore, L. Manti, D. Margarone, J. Prokupek, M. Renis, F. Romano, F. Schillaci, B. Tomasello, L. Torrisi, A. Tramontana, A. Velyhan, Nucl. Instrum. Methods Phys. Res. A 730, 174 (2013)

    Article  ADS  Google Scholar 

  3. K. Ledingham, W. Galster, New J. Phys. 12, 045005 (2010)

    Article  ADS  Google Scholar 

  4. S. Bulanov, J. Wilkens, T. Esirkepov, G. Korn, G. Kraft, S. Kraft, M. Molls, V. Khoroshkov, Physics-Uspekhi 57, 1149 (2014)

    Article  ADS  Google Scholar 

  5. M. Roth, T.E. Cowan, M.H. Key, S.P. Hatchett, C. Brown, W. Fountain, J. Johnson, D.M. Pennington, R.A. Snavely, S.C. Wilks, K. Yasuike, H. Ruhl, F. Pegoraro, S.V. Bulanov, E.M. Campbell, M.D. Perry, H. Powell, Phys. Rev. Lett. 86, 436 (2001)

    Article  ADS  Google Scholar 

  6. J.A. Cobble, R.P. Johnson, T.E. Cowan, N. Renard-Le Galloudec, M. Allen, J. Appl. Phys. 92, 1775 (2002)

    Article  ADS  Google Scholar 

  7. R.A. Snavely, M.H. Key, S.P. Hatchett, T.E. Cowan, M. Roth, T.W. Phillips, M.A. Stoyer, E.A. Henry, T.C. Sangster, M.S. Singh, S.C. Wilks, A. MacKinnon, A. Offenberger, D.M. Pennington, K. Yasuike, A.B. Langdon, B.F. Lasinski, J. Johnson, M.D. Perry, E.M. Campbell, Phys. Rev. Lett. 85, 2945 (2000)

    Article  ADS  Google Scholar 

  8. S.C. Wilks, A.B. Langdon, T.E. Cowan, M. Roth, M. Singh, S. Hatchett, M.H. Key, D. Pennington, A. MacKinnon, R.A. Snavely, Phys. Plasmas 8, 542 (2001)

    Article  ADS  Google Scholar 

  9. H. Schwoerer, S. Pfotenhauer, O. Jackel, K.U. Amthor, B. Liesfeld, W. Ziegler, R. Sauerbrey, K.W.D. Ledingham, T. Esirkepov, Nature 439, 113108 (2006)

    Article  Google Scholar 

  10. A. Sgattoni, P. Londrillo, A. Macchi, M. Passoni, Phys. Rev. E 85, 036405 (2012)

    Article  ADS  Google Scholar 

  11. M. Passoni, L. Bertagna, A. Zani, New J. Phys. 12, 045012 (2010)

    Article  ADS  Google Scholar 

  12. I.J. Kim, K.H. Pae, I.W. Choi, C.L. Lee, H.T. Kim, H. Singhal, J.H. Sung, S.K. Lee, H.W. Lee, P.V. Nickles et al., Phys. Plasmas (2016)

  13. L. Yin, B.J. Albright, B.M. Hegelich, K.J. Bowers, K.A. Flippo, T.J.T. Kwan, J.C. Fernández, Phys. Plasmas 14, 056706 (2007)

    Article  ADS  Google Scholar 

  14. L. Yin, B.J. Albright, B.M. Hegelich, J.C. Fernández, Laser Part. Beams 24, 291 (2006)

    Article  ADS  Google Scholar 

  15. L. Yin, B.J. Albright, D. Jung, R.C. Shah, S. Palaniyappan, K.J. Bowers, A. Henig, J.C. Fernández, B.M. Hegelich, Phys. Plasmas (2011)

  16. A.P.L. Robinson, R.G. Evans, C. Bellei, M. Zepf, S. Kar, Central Laser Facility Annual Report, 90 (2006-2007)

  17. B. Qiao, M. Zepf, P. Gibbon, M. Borghesi, B. Dromey, S. Kar, J. Schreiber, M. Geissler, Phys. Plasmas 18, 043102 (2011)

    Article  ADS  Google Scholar 

  18. A. Robinson, P. Gibbon, M.M. Zepf, S. Kar, R. Evans, C. Bellei, Plasma Phys. Control. Fusion 51, 024004 (2009)

    Article  ADS  Google Scholar 

  19. X. Zhang, B. Shen, L. Ji, F. Wang, Z. Jin, X. Li, M. Wen, J.R. Cary, Phys. Rev. ST Accel. Beams 12, 021301 (2009)

    Article  ADS  Google Scholar 

  20. M. Chen, Z.M. Sheng, Q.L. Dong, M.Q. He, Y.T. Li, M.A. Bari, J. Zhang, Phys. Plasmas 14, 053102 (2007)

    Article  ADS  Google Scholar 

  21. F. Fiuza, A. Stockem, E. Boella, R.A. Fonseca, L.O. Silva, D. Haberberger, S. Tochitsky, C. Gong, W.B. Mori, C. Joshi, Phys. Rev. Lett. 109, 215001 (2012)

    Article  ADS  Google Scholar 

  22. L.O. Silva, M. Marti, J.R. Davies, R.A. Fonseca, C. Ren, F.S. Tsung, W.B. Mori, Phys. Rev. Lett. 92, 015002 (2004)

    Article  ADS  Google Scholar 

  23. S. Kar, K.F. Kakolee, B. Qiao, A. Macchi, M. Cerchez, D. Doria, M. Geissler, P. McKenna, D. Neely, J. Osterholz, R. Prasad, K. Quinn, B. Ramakrishna, G. Sarri, O. Willi, X.Y. Yuan, M. Zepf, M. Borghesi, Phys. Rev. Lett. 109, 185006 (2012)

    Article  ADS  Google Scholar 

  24. A.R. Holkundkar, N.K. Gupta, Phys. Plasmas (2008)

  25. A.P.L. Robinson, R.M.G.M. Trines, N.P. Dover, Z. Najmudin, Plasma Phys. Control. Fusion 54, 115001 (2012)

    Article  ADS  Google Scholar 

  26. A. Macchi, S. Veghini, F. Pegoraro, Phys. Rev. Lett. 103, 085003 (2009)

    Article  ADS  Google Scholar 

  27. A. Macchi, S. Veghini, T.V. Liseykina, F. Pegoraro, New J. Phys. 12, 045013 (2010)

    Article  ADS  Google Scholar 

  28. T.P. Yu, A. Pukhov, G. Shvets, M. Chen, Phys. Rev. Lett. 105, 065002 (2010)

    Article  ADS  Google Scholar 

  29. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013)

    Article  ADS  Google Scholar 

  30. M. Grech, S. Skupin, R. Nuter, L. Gremillet, E. Lefebvre, New J. Phys. 11, 093035 (2009)

    Article  ADS  Google Scholar 

  31. T. Schlegel, N. Naumova, V.T. Tikhonchuk, C. Labaune, I.V. Sokolov, G. Mourou, Phys. Plasmas 16, 083103 (2009)

    Article  ADS  Google Scholar 

  32. C.K. Huang, B.J. Albright, L. Yin, H.C. Wu, K.J. Bowers, B.M. Hegelich, J.C. Fernández, Phys. Plasmas 18, 056707 (2011)

    Article  ADS  Google Scholar 

  33. S.S. Bulanov, A. Brantov, V.Y. Bychenkov, V. Chvykov, G. Kalinchenko, T. Matsuoka, P. Rousseau, S. Reed, V. Yanovsky, D.W. Litzenberg, K. Krushelnick, A. Maksimchuk, Phys. Rev. E 78, 026412 (2008)

    Article  ADS  Google Scholar 

  34. P. Kaw, J. Dawson, Phys. Fluids 13, 472 (1970)

    Article  ADS  Google Scholar 

  35. C. Max, F. Perkins, Phys. Rev. Lett. 27, 1342 (1971)

    Article  ADS  Google Scholar 

  36. V.I. Eremin, A.V. Korzhimanov, A.V. Kim, Phys. Plasmas 17, 043102 (2010)

    Article  ADS  Google Scholar 

  37. L. Willingale, S.R. Nagel, A.G.R. Thomas, C. Bellei, R.J. Clarke, A.E. Dangor, R. Heathcote, M.C. Kaluza, C. Kamperidis, S. Kneip, K. Krushelnick, N. Lopes, S.P.D. Mangles, W. Nazarov, P.M. Nilson, Z. Najmudin, Phys. Rev. Lett. 102, 125002 (2009)

    Article  ADS  Google Scholar 

  38. D. Jung, B. Albright, L. Yin, D. Gautier, B. Dromey, R. Shah, S. Palaniyappan, S. Letzring, H.C. Wu, T. Shimada, R. Johnson, D. Habs, M. Roth, J. Fernández, B. Hegelich, Laser Part. Beams 33, 695 (2015)

    Article  ADS  Google Scholar 

  39. M. Roth, D. Jung, K. Falk, N. Guler, O. Deppert, M. Devlin, A. Favalli, J. Fernández, D. Gautier, M. Geissel, R. Haight, C.E. Hamilton, B.M. Hegelich, R.P. Johnson, F. Merrill, G. Schaumann, K. Schoenberg, M. Schollmeier, T. Shimada, T. Taddeucci, J.L. Tybo, F. Wagner, S.A. Wender, C.H. Wilde, G.A. Wurden, Phys. Rev. Lett. 110, 044802 (2013)

    Article  ADS  Google Scholar 

  40. J.A. Bittencourt, Fundamentals of Plasma Physics (Pergamon, 1986)

  41. F.F. Chen, Introduction to Plasma Physics and Controlled Fusion, Plasma Physics (Plenum Press, 1984), Vol. 1

  42. S. Choudhary, A.R. Holkundkar, arXiv:1506.01770 (2016)

  43. F. Cattani, A. Kim, D. Anderson, M. Lisak, Phys. Rev. E 62, 1234 (2000)

    Article  ADS  Google Scholar 

  44. V. Goloviznin, T. Schep, Laser Part. Beams 18, 361 (2000)

    Article  ADS  Google Scholar 

  45. M. Tushentsov, A. Kim, F. Cattani, D. Anderson, M. Lisak, Phys. Rev. Lett. 87, 275002 (2001)

    Article  ADS  Google Scholar 

  46. E. Siminos, M. Grech, S. Skupin, T. Schlegel, V.T. Tikhonchuk, Phys. Rev. E 86, 056404 (2012)

    Article  ADS  Google Scholar 

  47. R. Lichters, R.E.W. Pfund, J. Meyer-Ter-Vehn, Report MPQ, Max-Planck-Institut fur Quantenoptik, 1997

  48. A. Henig, D. Kiefer, K. Markey, D.C. Gautier, K.A. Flippo, S. Letzring, R.P. Johnson, T. Shimada, L. Yin, B.J. Albright, K.J. Bowers, J.C. Fernández, S.G. Rykovanov, H.-C. Wu, M. Zepf, D. Jung, V.K. Liechtenstein, J. Schreiber, D. Habs, B.M. Hegelich, Phys. Rev. Lett. 103, 045002 (2009)

    Article  ADS  Google Scholar 

  49. T. Esirkepov, M. Yamagiwa, T. Tajima, Phys. Rev. Lett. 96, 105001 (2006)

    Article  ADS  Google Scholar 

  50. A. Macchi, C. Benedetti, Nucl. Instrum. Methods Phys. Res. A 620, 41 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amol R. Holkundkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S., Holkundkar, A. Efficient ion acceleration by relativistic self-induced transparency in subwavelength targets. Eur. Phys. J. D 70, 234 (2016). https://doi.org/10.1140/epjd/e2016-70391-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2016-70391-2

Keywords

Navigation