Skip to main content
Log in

Matter-wave solitons in a spin-1 Bose-Einstein condensate with time-modulated external potential and scattering lengths

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this paper, we present many matter-wave solitons in a system of three component Gross-Pitaevskii equation arising from the context of spinor Bose-Einstein condensates with time-modulated external potential and scattering lengths. The three component Gross-Pitaevskii equation with time-dependent parameters is first transformed into a three coupled nonlinear Schrödinger equation, then the exact soliton solutions of the three coupled nonlinear Schrödinger equation are given explicitly. Finally, the dynamics of the matter-wave solitons in the F = 1 spinor Bose-Einstein condensates is examined by specially choosing the frequency of the external potential. It is shown that when the frequency of the external potential is constant, there exist different kinds of matter-wave solitons as the atomic s-wave scattering lengths are varied about time, such as solitons with shape changing interactions, two-soliton bound states, squeezed matter-wave solitons, single bright and dark solitons. When the frequency of the external potential is time-modulated, there also exist various matter-wave solitons in the F = 1 spinor Bose-Einstein condensates, and we show that the time evolutions of the matter-wave solitons are sharply changed by the time-dependent trap frequency and nonlinear coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Stenger, S. Inouye, D.M. Stamper-Kurn, H.J. Miesner, A.P. Chikkatur, W. Ketterle, Nature 396, 345 (1998)

    Article  ADS  Google Scholar 

  2. A.E. Leanhardt, Y. Shin, D. Kielpinski, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 90, 140403 (2003)

    Article  ADS  Google Scholar 

  3. J. Ieda, T. Miyakawa, M. Wadati, Phys. Rev. Lett. 93, 194102 (2004)

    Article  ADS  Google Scholar 

  4. L. Li, Z. Li, B.A. Malomed, D. Mihalache, W.M. Liu, Phys. Rev. A 72, 033611 (2005)

    Article  ADS  Google Scholar 

  5. H.E. Nistazakis, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, R. Carretero-Gonzalez, Phys. Rev. A 77, 033612 (2008)

    Article  ADS  Google Scholar 

  6. B.J. Dabrowska-Wuster, E.A. Ostrovskaya, T.J. Alexander, Y.S. Kivshar, Phys. Rev. A 75, 023617 (2007)

    Article  ADS  Google Scholar 

  7. P. Szankowski, M. Trippenbach, E. Infeld, G. Rowlands, Phys. Rev. Lett. 105, 125302 (2010)

    Article  ADS  Google Scholar 

  8. T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998)

    Article  ADS  Google Scholar 

  9. T. Ohmi, K. Machida, J. Phys. Soc. Jpn 67, 1822 (1998)

    Article  ADS  Google Scholar 

  10. E.G.M. van Kempen, S.J.J.M.F. Kokkelmans, D.J. Heinzen, B.J. Verhaar, Phys. Rev. Lett. 88, 093201 (2002)

    Article  ADS  Google Scholar 

  11. N.N. Klausen, J.L. Bohn, C.H. Greene, Phys. Rev. A 64, 053602 (2001)

    Article  ADS  Google Scholar 

  12. S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M. Stamper-Kurn, W. Ketterle, Nature 392, 151 (1998)

    Article  ADS  Google Scholar 

  13. Z.X. Liang, Z.D. Zhang, W.M. Liu, Phys. Rev. Lett. 94, 050402 (2005)

    Article  ADS  Google Scholar 

  14. S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 85, 1795 (2000)

    Article  ADS  Google Scholar 

  15. S. Rajendrana, P. Muruganandamb, M. Lakshmanana, Physica D 239, 366 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  16. X.F. Zhang, X.H. Hu, X.X. Liu, W.M. Liu, Phys. Rev. A 79, 033630 (2009)

    Article  ADS  Google Scholar 

  17. J. Janis, M. Banks, N.P. Bigelow, Phys. Rev. A 71, 013422 (2005)

    Article  ADS  Google Scholar 

  18. B. Baizakov, G. Filatrella, B. Malomed, M. Salerno, Phys. Rev. E 71, 036619 (2005)

    Article  ADS  Google Scholar 

  19. R. Atre, P.K. Panigrahi, G.S. Agarwal, Phys. Rev. E 73, 056611 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. R. Yamazaki, S. Taie, S. Sugawa, Y. Takahashi, Phys. Rev. Lett. 105, 050405 (2010)

    Article  ADS  Google Scholar 

  21. J. Ieda, T. Miyakawa, M. Wadati, J. Phys. Soc. Jpn 73, 2996 (2004)

    Article  ADS  MATH  Google Scholar 

  22. T. Kanna, K. Sakkaravarthi, C.S. Kumar, M. Lakshmanan, M. Wadati, J. Math. Phys. 50, 113520 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. H.D. Wahlquist, F.B. Estabrook, J. Math. Phys. 16, 1 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. R. Dodd, A.P. Fordy, Phys. Lett. A 89, 168 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  25. D.S. Wang, in Recent Progress in Optical Fiber Research, edited by M. Yasin, S.W. Harun, H. Arof (InTech, 2012), pp. 49–64

  26. M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, 1981)

  27. V.S. Shchesnovich, J. Yang, J. Math. Phys. 44, 4604 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  28. D.S. Wang, D. Zhang, J. Yang, J. Math. Phys. 51, 023510 (2010)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deng-Shan Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, DS., Shi, YR., Chow, K. et al. Matter-wave solitons in a spin-1 Bose-Einstein condensate with time-modulated external potential and scattering lengths. Eur. Phys. J. D 67, 242 (2013). https://doi.org/10.1140/epjd/e2013-40451-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40451-4

Keywords

Navigation