Skip to main content
Log in

Transitions between drift waves in a magnetized cylindrical plasma: experiments and fluid model, solved with a spectral method

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

A bifurcation scenario between collisional drift waves with different azimuthal wavenumbers m in a magnetized plasma column is experimentally studied, and compared with a linear two-fluid model solved with a new spectral method. The control parameter is the potential of an internal metallic tube in the experiments, the electron drift along the axis of the cylinder in the model. By increasing this parameter, we find bifurcations from azimuthal modes m = 5 to m = 1. The linear properties of the model agree well with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Horton, Rev. Mod. Phys. 71, 735 (1999)

    Article  ADS  Google Scholar 

  2. X. Garbet, Plasma Phys. Control. Fusion 43, A251 (2001)

    Article  ADS  Google Scholar 

  3. H.W. Hendel, T.K. Chu, P.A. Politzer, Phys. Fluids 11, 2426 (1968)

    Article  ADS  Google Scholar 

  4. T.C. Simonen, T.K. Chu, H.W. Hendel, Phys. Rev. Lett. 23, 568 (1969)

    Article  ADS  Google Scholar 

  5. T. Pierre, G. Leclert, F. Braun, Rev. Sci. Instrum. 58, 6 (1987)

    Article  ADS  Google Scholar 

  6. E. Gravier, X. Caron, G. Bonhomme, T. Pierre, J.L. Briançon, Eur. Phys. J. D 8, 451 (2000)

    Article  ADS  Google Scholar 

  7. M. Matsukuma, T. Pierre, A. Escarguel, D. Guyomarc’h, G. Leclert, F. Brochard, E. Gravier, Y. Kawai, Phys. Lett. A 314, 163 (2003)

    Article  ADS  Google Scholar 

  8. O. Grulke, T. Klinger, A. Piel, Phys. Plasmas 6, 788 (1999)

    Article  ADS  Google Scholar 

  9. E. Wallace, E. Thomas, A. Eadon, J. Jackson, Rev. Sci. Instrum. 75, 5160 (2004)

    Article  ADS  Google Scholar 

  10. A.M. DuBois, A.C. Eadon, E. Thomas, Phys. Plasmas 19, 072102 (2012)

    Article  ADS  Google Scholar 

  11. R. Scarmozzino, A.K. Sen, G.A. Navratil, Phys. Rev. Lett. 57, 1729 (1986)

    Article  ADS  Google Scholar 

  12. R.G. Greaves, J. Chen, A.K. Sen, Plasma Phys. Control. Fusion 34, 1253 (1992)

    Article  ADS  Google Scholar 

  13. V.G. Pryimak, T. Miyazaki, J. Comput. Phys. 142, 370 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  14. E. Gravier, F. Brochard, G. Bonhomme, T. Pierre, J.L. Briançon, Phys. Plasmas 11, 529 (2004)

    Article  ADS  Google Scholar 

  15. T. Klinger, A. Latten, A. Piel, G. Bonhomme, T. Pierre, Plasma Phys. Control. Fusion 39, B145 (1997)

    Article  Google Scholar 

  16. T. Klinger, A. Latten, A. Piel, G. Bonhomme, T. Pierre, T. Dudok de Wit, Phys. Rev. Lett. 79, 3913 (1997)

    Article  ADS  Google Scholar 

  17. C. Schröder, O. Grulke, T. Klinger, Phys. Plasmas 9, 4249 (2004)

    Article  ADS  Google Scholar 

  18. S.A. Self, J. Plasma Phys. 4, 693 (1970)

    Article  ADS  Google Scholar 

  19. R.F. Ellis, E. Marden-Marshall, Phys. Fluids 22, 2137 (1979)

    Article  ADS  MATH  Google Scholar 

  20. R.F. Ellis, E. Marden-Marshall, R. Majeski, Plasma Phys. 22, 113 (1980)

    Article  ADS  Google Scholar 

  21. P. Baille, J.S. Chang, A. Claude, R.M. Hobson, G.L. Ogram, A.W. Yau, J. Phys. B 14, 1485 (1981)

    Article  ADS  Google Scholar 

  22. R.L. Merlino, IEEE Trans. Plasma Sci. 25, 60 (1997)

    Article  ADS  Google Scholar 

  23. F.F. Chen, Phys. Fluids 9, 965 (1966)

    Article  ADS  Google Scholar 

  24. J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright, SIAM J. Opt. 9, 112 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. X. Zou, J.Y. Liu, Y. Gong, Z.X. Wang, Y. Liu, X.G. Wang, Vacuum 73, 681 (2004)

    Article  Google Scholar 

  26. E. Gravier, R. Klein, P. Morel, N. Besse, P. Bertrand, Phys. Plasmas 15, 122103 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Etienne Gravier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gravier, E., Plaut, E., Caron, X. et al. Transitions between drift waves in a magnetized cylindrical plasma: experiments and fluid model, solved with a spectral method. Eur. Phys. J. D 67, 7 (2013). https://doi.org/10.1140/epjd/e2012-30637-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2012-30637-7

Keywords

Navigation