Skip to main content

Advertisement

Log in

Stopping of swift hydrogen diclusters: oscillator model

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

Enhanced stopping of swift hydrogen diclusters has been analysed theoretically. The target has been modeled as a gas of harmonic-oscillator atoms of variable density. This model predicts a proximity effect, i.e., enhanced stopping at high beam energy, and an oscillatory behavior at low energy. Both features get less pronounced with increasing target density due to increased screening of the ion-target interaction by polarization of the medium. Static screening by electrons accompanying the cluster likewise reduces the proximity effect. The Barkas-Andersen correction has been estimated in the \(Z_1^3\) limit. Our findings are in contrast with measurements on SiO2 [S.M. Shubeita et al., Phys. Rev. B 77, 115327 (2008)] which showed a pronounced step in the energy dependence of the proximity effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N.R. Arista, Nucl. Instr. Methods B 164-165, 108 (2000)

    Article  ADS  Google Scholar 

  2. R.I. Ewing, IRE Trans. Nucl. Sci. 9, 207 (1962)

    Article  ADS  Google Scholar 

  3. W. Brandt, A. Ratkowski, R.H. Ritchie, Phys. Rev. Lett. 33, 1325 (1974)

    Article  ADS  Google Scholar 

  4. N.R. Arista, Phys. Rev. B 18, 1 (1978)

    Article  ADS  Google Scholar 

  5. J. Lindhard, Mat. Fys. Medd. Dan. Vid. Selsk. 8, 1 (1954)

    Google Scholar 

  6. J. Steinbeck, K. Dettmann, J. Phys. C 11, 2907 (1978)

    Article  ADS  Google Scholar 

  7. G. Basbas, R.H. Ritchie, Phys. Rev. A 25, 1943 (1982)

    Article  ADS  Google Scholar 

  8. E. Ray, R. Kirsch, H.H. Mikkelsen, J.C. Poizat, J. Remillieux, Nucl. Instr. Methods B 69, 133 (1992)

    Article  ADS  Google Scholar 

  9. J. Jensen, H.H. Mikkelsen, Nucl. Instr. Methods B 115, 39 (1996)

    Article  ADS  Google Scholar 

  10. J. Jensen, P. Sigmund, Phys. Rev. A 61, 032903 (2000)

    Article  ADS  Google Scholar 

  11. J.D. Jackson, Classical electrodynamics (John Wiley & Sons, New York, 1975)

  12. S.M. Shubeita, M.A. Sortica, P.L. Grande, J.F. Dias, N.R. Arista, Phys. Rev. B 77, 115327 (2008)

    Article  ADS  Google Scholar 

  13. P. Sigmund, U. Haagerup, Phys. Rev. A 34, 892 (1986)

    Article  ADS  Google Scholar 

  14. A. Belkacem, P. Sigmund, Nucl. Instr. Methods B 48, 29 (1990)

    Article  ADS  Google Scholar 

  15. S.M. Shubeita, R.C. Fadanelli, J.F. Dias, P.L. Grande, C.D. Denton, I. Abril, R. Garcia-Molina, N.R. Arista, Phys. Rev. B 80, (2009)

  16. H.H. Mikkelsen, P. Sigmund, Phys. Rev. A 40, 101 (1989)

    Article  ADS  Google Scholar 

  17. H.H. Mikkelsen, E.H. Mortensen, Nucl. Instr. Methods B 48, 39 (1990)

    Article  ADS  Google Scholar 

  18. N.R. Arista, V.H. Ponce, J. Phys. C 8, L001 (1975)

    Article  Google Scholar 

  19. W. Brandt, R.H. Ritchie, Nucl. Instrum. Methods 132, 43 (1976)

    Article  ADS  Google Scholar 

  20. W. Brandt, M. Kitagawa, Phys. Rev. B 25, 5631 (1982)

    Article  ADS  Google Scholar 

  21. M. Abramowitz, I.A. Stegun, Handbook of mathematical functions (Dover, New York, 1964)

  22. J. Lindhard, A.H. Sørensen, Phys. Rev. A 53, 2443 (1996)

    Article  ADS  Google Scholar 

  23. P. Sigmund, Particle penetration and radiation effects, bd. 151 af Springer Series in Solid-State Sciences (Springer, Berlin, 2006)

  24. J.C. Ashley, R.H. Ritchie, W. Brandt, Phys. Rev. B 5, 2393 (1972)

    Article  ADS  Google Scholar 

  25. J. Lindhard, Nucl. Instrum. Methods 132, 1 (1976)

    Article  ADS  Google Scholar 

  26. P. Sigmund, A. Schinner, Phys. Scr. T 92, 222 (2001)

    ADS  Google Scholar 

  27. J. Oddershede, J.R. Sabin, P. Sigmund, Phys. Rev. Lett. 51, 1332 (1983)

    Article  ADS  Google Scholar 

  28. J. Lindhard, A. Winther, Mat. Fys. Medd. Dan. Vid. Selsk. 34, 1 (1964)

    Google Scholar 

  29. P. Sigmund, Nucl. Instr. Methods B 67, 11 (1992)

    Article  ADS  Google Scholar 

  30. C. Tarrio, S.E. Schnatterly, J. Opt. Soc. Am. B 10, 952 (1993)

    Article  ADS  Google Scholar 

  31. ICRU, Stopping of ions heavier than helium, ICRU Report (Oxford University Press, Oxford, 2005), Vol. 73

  32. P. Sigmund, A. Schinner, Nucl. Instr. Methods B 195, 64 (2002)

    Article  ADS  Google Scholar 

  33. I. Abril, M. Behar, R. Garcia-Molina, R.C. Fadanelli, L.C.C.M. Nagamine, P.L. Grande, L. Schunemann, C.D. Denton, N.R. Arista, E.B. Saitovitch, Eur. Phys. J. D 54, 65 (2009)

    Article  ADS  Google Scholar 

  34. R.D. Mui\(\tilde{{\rm n}}\)o, A. Salin, Phys. Rev. B 62, 5207 (2000)

    Article  ADS  Google Scholar 

  35. N.R. Arista, A.F. Lifschitz, Phys. Rev. A 59, 2719 (1999)

    Article  ADS  Google Scholar 

  36. N. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 18, 1 (1948)

    Google Scholar 

  37. P. Sigmund, A. Schinner, Eur. Phys. J. D 12, 425 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sigmund.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sigmund, P., Schinner, A. Stopping of swift hydrogen diclusters: oscillator model. Eur. Phys. J. D 61, 39–50 (2011). https://doi.org/10.1140/epjd/e2010-10144-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-10144-9

Keywords

Navigation