Skip to main content
Log in

Extended JC-Dicke model for two-component atomic BEC inside a cavity

  • Quantum Optics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We consider a trapped two-component atomic Bose-Einstein condensate (BEC), where each atom with three energy-levels is coupled to an optical cavity field and an external classical optical field as well as a microwave field to form the so-called Δ-type configuration. After adiabatically eliminating the atomic excited state, an extended JC-Dicke model is derived under the rotating-wave approximation. The scaled ground-state energy and the phase diagram of this model Hamiltonian are investigated in the framework of mean-field approach. A new phase transition is revealed when the amplitude of microwave field changes its sign.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Dicke, Phys. Rev. 93, 99 (1954)

    Article  MATH  ADS  Google Scholar 

  2. K. Hepp, E.H. Lieb, Ann. Phys. (N. Y.) 76, 360 (1973)

    Article  MathSciNet  ADS  Google Scholar 

  3. Y.K. Wang, F.T. Hioes, Phys. Rev. A 7, 831 (1973)

    Article  ADS  Google Scholar 

  4. J.P. Provost, F. Rocca, G. Vallee, Physica A 85, 202 (1976)

    Article  ADS  Google Scholar 

  5. C.M. Bowden, C.C. Sung, Phys. Rev. A 19, 2392 (1979)

    Article  ADS  Google Scholar 

  6. C. Emary, T. Brandes, Phys. Rev. Lett. 90, 044101 (2003)

    Article  ADS  Google Scholar 

  7. C. Emary, T. Brandes, Phys. Rev. E 67, 066203 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  8. N. Lambert, C. Emary, T. Brandes, Phys. Rev. Lett. 92, 073602 (2004)

    Article  ADS  Google Scholar 

  9. N. Lambert, C. Emary, T. Brandes, Phys. Rev. A 71, 053804 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  10. X.-W. Hou, B. Hu, Phys. Rev. A 69, 042110 (2004)

    Article  ADS  Google Scholar 

  11. C. Emary, T. Brandes, Phys. Rev. A 69, 053804 (2004)

    Article  ADS  Google Scholar 

  12. C.F. Lee, N.F. Johnson, Phys. Rev. Lett. 93, 083001 (2004)

    Article  ADS  Google Scholar 

  13. Y. Li, Z.D. Wang, C.P. Sun, Phys. Rev. A 74, 023815 (2006)

    Article  ADS  Google Scholar 

  14. J. Vidal, S. Dusuel, Europhys. Lett. 74, 817 (2006)

    Article  ADS  Google Scholar 

  15. M.A. Alcalde, A.L.L. de Lemos, N.F. Svaiter, J. Phys. A Math. Theor. 40, 11961 (2007)

    Article  MATH  ADS  Google Scholar 

  16. F. Dimer, B. Estienne, A.S. Parkins, H.J. Carmichael, Phys. Rev. A 75, 013804 (2007)

    Article  ADS  Google Scholar 

  17. G. Chen, Z. Chen, J. Liang, Phys. Rev. A 76, 055803 (2007)

    Article  ADS  Google Scholar 

  18. D. Tolkunov, D. Solenov, Phys. Rev. B 75, 024402 (2007)

    Article  ADS  Google Scholar 

  19. G. Chen, Z. Chen, J. Liang, Phys. Rev. A 76, 045801 (2007)

    Article  ADS  Google Scholar 

  20. G. Chen, X. Wang, J.-Q. Liang, Z.D. Wang, Phys. Rev. A 78, 023634 (2008)

    Article  ADS  Google Scholar 

  21. K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, e-print arXiv:0912.3261

  22. D. Nagy, G. Konya, G. Szirmai, P. Domokos, Phys. Rev. Lett. 104, 130401 (2010)

    Article  ADS  Google Scholar 

  23. H. Goto, K. Ichimura, Phys. Rev. A 77, 053811 (2008)

    Article  ADS  Google Scholar 

  24. O. Tsyplyatyev, D. Loss, Phys. Rev. A 80, 023803 (2009)

    Article  ADS  Google Scholar 

  25. M.A. Alcalde, R. Kullock, N.F. Svaiterc, J. Math. Phys. 50, 013511 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  26. J. Larson, M. Lewenstein, New J. Phy. 11, 063027 (2009)

    Article  ADS  Google Scholar 

  27. Q.-H. Chen, Y.-Y. Zhang, T. Liu, K.-L. Wang, Phys. Rev. A 78, 051801(R) (2008)

    ADS  Google Scholar 

  28. J.-F. Huang, Y. Li, J.-Q. Liao, L.-M. Kuang, C.P. Sun, Phys. Rev. A 80, 063829 (2009)

    Article  ADS  Google Scholar 

  29. A. Öttl, S. Ritter, M. Köhl, T. Esslinger, Rev. Sci. Instrum. 77, 063118 (2006)

    Article  ADS  Google Scholar 

  30. F. Brennecke, T. Donner, S. Ritter, T. Bourdel, M. Köhl, T. Esslinger, Nature 450, 268 (2007)

    Article  ADS  Google Scholar 

  31. F. Brennecke, S. Ritter, T. Donner, T. Esslinger, Science 322, 235 (2008)

    Article  ADS  Google Scholar 

  32. K.W. Murch, K.L. Moore, S. Gupta, D.M. Stamper-Kurn, Nature Phys. 4, 561 (2008)

    Article  Google Scholar 

  33. The so-called “JC” model is the abbreviation for Jaynes-Cummings model (see E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963)), which describes the coherent coupling of a single two-level atom with one mode of the quantized light field by neglecting the anti-resonant terms in the Hamiltonian. Strictly speaking, our current model including N atoms is more related to the Tavis-Cummings model (seeM. Tavis, F.W. Cummings, Phys. Rev. 170, 379 (1968)). For convenience, we keep the well-known name “JC model” here.

    Article  Google Scholar 

  34. M.R. Matthews, D.S. Hall, D.S. Jin, J.R. Ensher, C.E. Wieman, E.A. Cornell, F. Dalfovo, C. Minniti, S. Stringari, Phys. Rev. Lett. 81, 243 (1998)

    Article  ADS  Google Scholar 

  35. D.S. Hall, M.R. Matthews, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 81, 1543 (1998)

    Article  ADS  Google Scholar 

  36. D.S. Hall, M.R. Matthews, J.R. Ensher, C.E. Wieman, E.A. Cornell, Phys. Rev. Lett. 81, 1539 (1998)

    Article  ADS  Google Scholar 

  37. J. Metz, M. Trupke, A. Beige, Phys. Rev. Lett. 97, 040503 (2006)

    Article  ADS  Google Scholar 

  38. S.-L. Zhu, H. Fu, C.-J. Wu, S.-C. Zhang, L.-M. Duan, Phys. Rev. Lett. 97, 240401 (2006)

    Article  ADS  Google Scholar 

  39. Y. Li, C. Bruder, C.P. Sun, Phys. Rev. Lett. 99, 130403 (2007)

    Article  ADS  Google Scholar 

  40. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002)

    Google Scholar 

  41. T. Holstein, H. Primakoff, Phys. Rev. 58, 1098 (1940)

    Article  MATH  ADS  Google Scholar 

  42. Commonly, when an atomic transition is coupled to only one optical/microwave field, the phase factor of the coupling strength (i.e., Ω here) can be absorbed into the atomic state by redefining the state and thus the coupling strength can be taken to be always “positive”. However, it is not the case if a given atomic transition is coupled to two independent (optical/microwave) fields (or identically coupled to two fields as considered here). In this case, one should not take the both coupling strengths to be always “positive”. In this paper, we consider the coupling strength Ω to be a real value (either positive or negative) for the sake of simplicity (here an opposite sign of Ω may be viewed to denote the opposite direction of the “external field-Ω”, as seen from Eq. (7)).

  43. E. Tiesinga, B.J. Verhaar, H.T.C. Stoof, Phys. Rev. A 47, 4114 (1993)

    Article  ADS  Google Scholar 

  44. S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M. Stamper-Kurn, W. Ketterle, Nature 392, 151 (1998)

    Article  ADS  Google Scholar 

  45. S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 85, 1795 (2000)

    Article  ADS  Google Scholar 

  46. P.O. Fedichev, Y. Kagan, G.V. Shlyapnikov, J.T.M. Walraven, Phys. Rev. Lett. 77, 2913 (1996)

    Article  ADS  Google Scholar 

  47. M. Theis, G. Thalhammer, K. Winkler, M. Hellwig, G. Ruff, R. Grimm, J.H. Denschlag, Phys. Rev. Lett. 93, 123001 (2004)

    Article  ADS  Google Scholar 

  48. P. Zhang, P. Naidon, M. Ueda, Phys. Rev. Lett. 103, 133202 (2009)

    Article  ADS  Google Scholar 

  49. We here do not adopt the scenario used in reference [20] to address the Mott-superfluid phase transition. It is because such a phase transition may be well defined in the meanfield framework only for ωb = 0.

  50. G.C. Duncan, Phys. Rev. A 9, 418 (1974)

    Article  ADS  Google Scholar 

  51. K. Rzazewski, K. Wódkiewicz, W. Zakowicz, Phys. Rev. Lett. 35, 432 (1975)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Zhang, P. & Wang, Z. Extended JC-Dicke model for two-component atomic BEC inside a cavity. Eur. Phys. J. D 58, 379–384 (2010). https://doi.org/10.1140/epjd/e2010-00126-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2010-00126-4

Keywords

Navigation