Skip to main content
Log in

Structural properties of amorphous Fe2O3 nanoparticles

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have investigated the microstructure of amorphous Fe2O3 nanoparticles by using molecular dynamics (MD) simulations. Non-periodic boundary conditions with Born-Mayer type pair potentials were used to simulate a spherical model of different diameters of 2, 3, 4 and 5 nm. Structural properties of an amorphous model obtained at 350 K have been analyzed in detail through the partial radial distribution functions (PRPFs), coordination number distributions, bond-angle distributions and interatomic distances. Calculations showed that structural characteristics of the model are in qualitative agreement with the experimental data. The observation of a large amount of structural defects as the particle size is decreased suggested that surface structure strongly depends on the size of nanoparticles. In addition, surface structure of amorphous Fe2O3 nanoparticles have been studied and compared with that observed in the core and in the bulk counterpart. Radial density profiles and stoichiometry in morphous Fe2O3 nanoparticles were also found and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Machala, R. Zboril, A. Gendanken, J. Phys. Chem. B 111, 4003 (2007)

    Article  Google Scholar 

  2. L. Murawski, C.H. Chung, J.D. Mackenzie, J. Non Cryst. Solids 32, 91 (1979)

    Article  ADS  Google Scholar 

  3. J. Sarradin, A. Guessous, M. Ribes, J. Power Sources 62, 149 (1996)

    Article  Google Scholar 

  4. E.P. Wohlfarth, Ferromagnetic Materials (Amsterdam, The Netherlands, 1980)

    Google Scholar 

  5. N. Perkas, Y. Koltypin, O. Palchik, A. Gedanken, S. Chandrasekaran, Appl. Catal. A 209, 125 (2001)

    Article  Google Scholar 

  6. D.N. Srivastava, N. Perkas, A. Gedanken, I. Felner, J. Phys. Chem. B 106, 1878 (2002)

    Article  Google Scholar 

  7. W. Zhonghua, G. Lin, L. Qianshu, Z. Hesun, J. Phys. Cond. Mat. 11, 4961 (1999)

    Article  ADS  Google Scholar 

  8. L.X. Chen, T. Liu, M.C. Thurnauer, R. Csencsits, T. Rajh, J. Phys. Chem. B 106, 8539 (2002)

    Article  Google Scholar 

  9. O. Iglesias, A. Labarta, Phys. Rev. B 63, 184416 (2001)

    Article  ADS  Google Scholar 

  10. D.K. Belashchenko, Russ. Chem. Rev. 66, 733 (1997)

    Article  Google Scholar 

  11. A. Roder, W. Kob, K. Binder, J. Chem. Phys. 114, 7602 (2001)

    Article  ADS  Google Scholar 

  12. K. Vollmayr, W. Kob, K. Binder, Phys. Rev. B 54, 15808 (1996)

    Article  ADS  Google Scholar 

  13. J.P. Rino, I. Ebbsjö, R.K. Kalia, A. Nakano, P. Vashishta, Phys. Rev. B 47, 3053 (1993)

    Article  ADS  Google Scholar 

  14. V.V. Hoang, H. Zung, N.H.B. Trong, Eur. Phys. J. D 44, 515 (2007)

    Article  ADS  Google Scholar 

  15. V. Petkov, G. Holzhuter, U. Troge, Th. Gerber, B. Himmel, J. Non Cryst. Solids 231, 17 (1998)

    Article  ADS  Google Scholar 

  16. L. Signorini, L. Pasquini, L. Savini, R. Carboni, F. Boscherini, E. Bonetti, A. Giglia, M. Pedio, N. Mahne, S. Nannarone, Phys. Rev. B 68, 195423 (2003)

    Article  ADS  Google Scholar 

  17. R. Kubo, J. Phys. Soc. Jpn 17, 986 (1962)

    Article  MathSciNet  Google Scholar 

  18. S.P. Adiga, P. Zapol, L.A. Curtiss, Phys. Rev. B 74, 064204 (2006)

    Article  ADS  Google Scholar 

  19. T. Rajh, J.M. Nedeljkovic, L.X. Chen, O. Poluektov, M.C. Thurnauer, J. Phys. Chem. B 103, 3515 (1999)

    Article  Google Scholar 

  20. V.V. Hoang, J. Phys. Chem. B 111, 12649 (2007)

    Article  Google Scholar 

  21. V.V. Hoang, Nanotechnology 19, 105706 (2008)

    Article  ADS  Google Scholar 

  22. V.V. Hoang, T. Odagaki, Phys. Rev. B 77, 125434 (2008)

    Article  ADS  Google Scholar 

  23. J. Huang, L.S. Bartell, Mol. Struct. 567, 145 (2000)

    Article  Google Scholar 

  24. R.H. Kodama, A.E. Berkowitz, Phys. Rev. B 59, 6321 (1998)

    Article  ADS  Google Scholar 

  25. M. George, S.S. Nair, K.A. Malini, P.A. Loy, M.R. Anantharaman, J. Phys. D: Appl. Phys. 40, 1593 (2007)

    Article  ADS  Google Scholar 

  26. J. Mazo-Zuluaga, J. Restrepo, J. Mejia-Lopez, J. Phys. Cond. Mat. 20, 195213 (2008)

    Article  ADS  Google Scholar 

  27. K. Shimizu, G.M. Brown, H. Habazaki, K. Kobayashi, P. Skeldon, G.E. Thompson, G.C. Wood, Corros. Sci. 41, 1783 (1999)

    Article  Google Scholar 

  28. K. Shimizu, G.M. Brown, K. Kobayashi, P. Skeldon, G.E. Thompson, G.C. Wood, Corros. Sci. 40, 1049 (1998)

    Article  Google Scholar 

  29. H. Habazaki, K. Shimizu, P. Skeldon, G.E. Thompson, G.C. Wood, X. Zhou, Corros. Sci. 39, 731 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. H. L. Khanh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanh, B.T.H.L., Hoang, V.V. & Zung, H. Structural properties of amorphous Fe2O3 nanoparticles. Eur. Phys. J. D 49, 325–332 (2008). https://doi.org/10.1140/epjd/e2008-00168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2008-00168-1

PACS

Navigation