Skip to main content

Advertisement

Log in

α-helix↔random coil phase transition: analysis of ab initio theory predictions

  • Molecular Physics and Chemical Physics
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract.

In the present paper we present results of calculations obtained with the use of the theoretical method described in our preceding paper [Eur. Phys. J. D, DOI: 10.1140/epjd/e2007-00328-9] and perform detail analysis of α-helix↔random coil transition in alanine polypeptides of different length. We have calculated the potential energy surfaces of polypeptides with respect to their twisting degrees of freedom and construct a parameter–free partition function of the polypeptide using the suggested method [Eur. Phys. J. D, DOI: 10.1140/epjd/e2007-00328-9]. From the build up partition function we derive various thermodynamical characteristics for alanine polypeptides of different length as a function of temperature. Thus, we analyze the temperature dependence of the heat capacity, latent heat and helicity for alanine polypeptides consisting of 21, 30, 40, 50 and 100 amino acids. Alternatively, we have obtained same thermodynamical characteristics from the use of molecular dynamics simulations and compared them with the results of the new statistical mechanics approach. The comparison proves the validity of the statistical mechanic approach and establishes its accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • A. Yakubovich, I. Solov'yov, A.V. Solov'yov, W. Greiner, Eur. Phys. J. D, DOI: 10.1140/epjd/e2007-00328-9

  • A. Yakubovich, I. Solov'yov, A. Solov'yov, W. Greiner, Eur. Phys. J. D 40, 363 (2006)

    Article  ADS  Google Scholar 

  • A. Yakubovich, I. Solov'yov, A. Solov'yov, W. Greiner, Europhys. News 38, 10 (2007)

    Google Scholar 

  • B. Zimm, J. Bragg, J. Chem. Phys. 31, 526 (1959)

    Article  ADS  Google Scholar 

  • J. Gibbs, E. DiMarzio, J. Phys. Chem. 30, 271 (1959)

    Article  Google Scholar 

  • S. Lifson, A. Roig, J. Chem. Phys. 34, 1963 (1961)

    Article  ADS  Google Scholar 

  • J.A. Schellman, J. Phys. Chem. 62, 1485 (1958)

    Article  Google Scholar 

  • S. Lifson, J. Chem. Phys. 40, 3705 (1964)

    Article  ADS  Google Scholar 

  • D. Poland, H.A. Scheraga, J. Chem. Phys. 45, 1456 (1966)

    Article  ADS  Google Scholar 

  • T. Ooi, M. Oobatake, Proc. Natl. Acad. Sci. USA 88, 2859 (1991)

    Article  ADS  Google Scholar 

  • J. Gomez, V.J. Hilser, D. Xie, E. Freire, Proteins 22, 404 (1995)

    Article  Google Scholar 

  • D.J. Tobias, C.L. Brooks, Biochem. 30, 6059 (1991)

    Article  Google Scholar 

  • A.E. Garcia, K.Y. Sanbonmatsu, Proc. Natl. Acad. Sci. USA 99, 2781 (2002)

    ADS  Google Scholar 

  • H. Nymeyer, A.E. Garcia, Proc. Natl. Acad. Sci. USA 100, 13934 (2003)

    Article  ADS  Google Scholar 

  • A. Irbäck, F. Sjunnesson, Proteins 56, 110 (2004)

    Article  Google Scholar 

  • D. Shental-Bechor, S. Kirca, N. Ben-Tal, T. Haliloglu, Biophys. J. 88, 2391 (2005)

    Article  Google Scholar 

  • R.A. Kromhout, B. Linder, J. Phys. Chem. B 105, 4987 (2001)

    Article  Google Scholar 

  • A. Chakrabartty, T. Kortemme, R.L. Baldwin, Protein Sci. 3, 843 (1994)

    Article  Google Scholar 

  • M. Go, N. Go, H.A. Scheraga, J. Chem. Phys. 52, 2060 (1970)

    Article  ADS  Google Scholar 

  • H.A. Scheraga, J.A. Villa, D.R. Ripoll, Biophys. Chem. 01-102, 255 (2002)

    Google Scholar 

  • J.M. Scholtz, S. Marqusee, R.L. Baldwin, E.J. York, J.M. Stewart, M. Santoro, D.W. Bolen, Proc. Natl. Acad. Sci. USA 88, 2854 (1991)

    Article  ADS  Google Scholar 

  • I.K. Lednev, A.S. Karnoup, M.C. Sparrow, S.A. Asher, J. Am. Chem. Soc. 123, 2388 (2001)

    Article  Google Scholar 

  • P.A. Thompson, W.A. Eaton, J. Hofrichter, Biochem. 36, 9200 (1997)

    Article  Google Scholar 

  • S. Williams, R.G. Thimothy, P. Causgrove, K.S. Fang, R.H. Callender, W.H. Woodruff, R.B. Dyer, Biochem. 35, 691 (1996)

    Article  Google Scholar 

  • E. Shakhnovich, Chem. Rev. 106, 1559 (2006)

    Article  Google Scholar 

  • A. Finkelstein, O. Ptitsyn, Protein Physics. A Course of Lectures (Elsevier Books, Oxford, 2002)

  • J.E. Shea, C.L. Brooks, Ann. Rev. Phys. Chem. 52, 499 (2001)

    Article  ADS  Google Scholar 

  • N.V. Prabhu, K.A. Sharp, Ann. Rev. Phys. Chem. 56, 521 (2005)

    Article  ADS  Google Scholar 

  • A. Rubin, Biophysics: Theoretical Biophysics (Moscow University Press, Nauka, 2004)

  • A. Yakubovich, I. Solov'yov, A. Solov'yov, W. Greiner, Eur. Phys. J. D 39, 23 (2006)

    Article  ADS  Google Scholar 

  • A. Yakubovich, I. Solov'yov, A.V. Solov'yov, W. Greiner, Khimicheskaya Fizika (Chemical Physics) (in Russian) 25, 11 (2006)

    MathSciNet  Google Scholar 

  • I. Solov'yov, A. Yakubovich, A. Solov'yov, W. Greiner, Phys. Rev. E 73, 021916 (2006)

    Article  ADS  Google Scholar 

  • I. Solov'yov, A. Yakubovich, A.V.Solov'yov, W. Greiner, J. Exp. Theor. Phys. 102, 314 (2006); original Russian text, published in Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki 129, 356 (2006)

    Article  ADS  Google Scholar 

  • D. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, 2004)

  • J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, J. Comp. Chem. 26, 1781 (2005)

    Article  Google Scholar 

  • D. Frenkel, B.J. Smit, Understanding Molecular Simulation (Academic Press, 2001)

  • W. Coffey, Y. Kalmykov, J. Waldron, The Langevin Equation, Vol. 14 of World Scientific in Contemporary Chemical Physics (World Scientific Publishing Co., 2004)

  • F. Reif, Fundamentals of Statistical and Thermal Physics (McGraw Hill, New York, 1965)

  • A. MacKerell et al., J. Phys. Chem. B 102, 3586 (1998)

    Article  Google Scholar 

  • E. Henriques, A. Solov'yov, Abstract at the WE-Heraeus-Seminar “Biomolecular Simulation: From Physical Principles to Biological Function” (2006)

  • E. Henriques, A. Solov'yov, Eur. Phys. J. D, submitted, arXiv:0704.3193

  • M. Sotomayor, D.P. Corey, K. Schulten, Science 13, 669 (2005)

    Google Scholar 

  • J. Gullingsrud, K. Schulten, Biophys. J. 86, 3496 (2004)

    Article  ADS  Google Scholar 

  • D.L. Nelson, M.M. Cox, Principles of Biochemistry (W.H. Freeman and Company, New York, 2005)

  • D. Voet, J. Voet, Biochemistry (John Willey and Sons, Inc., USA, 2004)

  • W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graph. 14, 33 (1996)

    Article  Google Scholar 

  • A. Becke, Phys. Rev. A 38, 3098 (1988)

    Article  ADS  Google Scholar 

  • C. Lee, W. Yang, R. Parr, Phys. Rev. B 37, 785 (1988)

    Article  ADS  Google Scholar 

  • D. Wei, H. Guo, D. Salahub, Phys. Rev. E 64, 011907 (2001)

    Article  ADS  Google Scholar 

  • L. Landau, E. Lifshitz, Statistical Physics (Pergamon Press, London-Paris, 1959)

  • A. Irbäck, B. Samuelsson, F. Sjunnesson, S. Wallin, Biophys. J. 85, 1466 (2003)

    Article  Google Scholar 

  • C. Nowak, V.G. Rostiashvilli, T.A. Viglis, J. Chem. Phys. 46, 4410 (1967)

    Article  Google Scholar 

  • T. Ooi, R.A. Scott, G. Vanderkooi, H.A. Scheraga, J. Chem. Phys. 46, 4410 (1967)

    Article  ADS  Google Scholar 

  • M. Cubrovic, O. Obolensky, A. Solov'yov, in preparation (2007)

  • M. Karas, F. Hillenkamp, Anal. Chem. 60, 2299 (1988)

    Article  Google Scholar 

  • F. Hillenkamp, M. Karas, Int. J. Mass Spectrom. 200, 71 (2000)

    Article  Google Scholar 

  • M. Karas, U. Bahr, I. Fournier, M. Gluckmann, A. Pfenninger, J. Mass Spectrom. 226, 239 (2003)

    Article  Google Scholar 

  • M. Wind, W. Lehmann, J. Anal. Atom. Spectrom. 19, 20 (2004)

    Article  Google Scholar 

  • J. Fenn, M. Mann, C. Meng, S. Wong, C. Whitehouse, Science 246, 64 (1989)

    Article  ADS  Google Scholar 

  • S. Bröndsted-Nielsen, J. Andersen, P. Hvelplund, B. Liu, S. Tomita, J. Phys. B-At. Mol. Opt. 37, R25 (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Solov'yov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solov'yov, I., Yakubovich, A., Solov'yov, A. et al. α-helix↔random coil phase transition: analysis of ab initio theory predictions. Eur. Phys. J. D 46, 227–240 (2008). https://doi.org/10.1140/epjd/e2007-00327-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2007-00327-x

PACS.