Skip to main content
Log in

Melting, freezing and nucleation in nanoclusters of potassium chloride

I - Molecular dynamics simulation

  • Clusters and Nanostructures
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

Molecular dynamics simulations of the melting, freezing and nucleation are presented for unconstrained nanoclusters of KCl with a number of ions between 512 and 10648. The maximum extent of the probed liquid supercooling is analysed to the light of theoretical predictions and compared with experimental data. The fraction of the solid-like ions in the supercooled liquid is used as an indicator of heterogeneities within the liquid. Induced nucleation by seeding the supercooled liquid indicates that solid-liquid coexistence is stable, and sustained during the lifetime of the clusters, relatively to the supercooled liquid. A phenomenological analysis on the relaxation times of the crystal growth process is made. Critical nuclei sizes computed from the effectiveness of the seeds in the heterogeneous nucleation of the supercooled liquid, and from the residual crystallites in clusters not totally melted, are presented as a function of the temperature. The behavior of the systems is followed through various properties such as liquid and solid molar fractions, enthalpies of melting, heat capacities, self-diffusion coefficients and relaxation times related to the freezing process. The consistency of the simulation results for the heterogeneous nucleation is assessed by means of a classical nucleation model, from which an estimate of the interfacial surface tension is also worked out and compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D.J. McGinty, J. Chem. Phys. 58, 4733 (1973)

    Article  Google Scholar 

  • C.L. Briant, J.J. Burton, J. Chem. Phys. 63, 2045 (1975)

    Article  ADS  Google Scholar 

  • M. Amini, D. Fincham, R.W. Hockney, J. Phys. C: Solid St. Phys. 12, 4707 (1979)

    Article  ADS  Google Scholar 

  • N. Quirke, Mol. Simul. 1, 249 (1988)

    Google Scholar 

  • R.B. McClurg, J. Aerosol Sci. 29, S43 (1998)

  • S. Sugano, H. Koizumi, Microcluster Physics (Springer, 1998)

  • F.S. Zhang, E. Suraud, F. Calvo, F. Spiegelmann, Chem. Phys. Lett. 300, 595 (1999)

    Article  Google Scholar 

  • D.J. Wales, R.S. Berry, J. Chem. Phys. 92, 4473 (1990)

    Article  ADS  Google Scholar 

  • R.S. Berry, B.M. Smirnov, J. Chem. Phys. 114, 6816 (2001)

    Article  ADS  Google Scholar 

  • J.P.K. Doye, D.J. Wales, W. Branz, F. Calvo, Phys. Rev. B 64, 1 (2001)

    Article  Google Scholar 

  • R.S. Berry, C. R. Phys. 3, 319 (2002)

    Article  Google Scholar 

  • M. Ma, W. Lu, J. Huang, J. Solid State Chem. 165, 289 (2002)

    Article  ADS  Google Scholar 

  • S.P. Huang, P.B. Balbuena, J. Phys. Chem. B 106, 7225 (2002)

    Article  Google Scholar 

  • J. Huang, L.S. Bartell, J. Phys. Chem. A 106, 2404 (2002)

    Article  Google Scholar 

  • L.S. Bartell, J. Phys. Chem. A 106, 10893 (2002)

    Article  Google Scholar 

  • L.S. Bartell, Y.G. Chushak, J. Huang, Atmosph. Res. 65, 153 (2003)

    Article  Google Scholar 

  • G.W. Turner, Y.G. Chushak, L.S. Bartell, J. Phys. Chem. A 108, 1666 (2004)

    Article  Google Scholar 

  • R.A. Eppler, H.G. Drickamer, J. Phys. Chem. Sol. 6, 180 (1958)

    Article  Google Scholar 

  • T. Ohta, S. Kinoshita, H. Kuroda, J. Electron. Spectrosc. Relat. Phenom. 12, 169 (1977)

    Article  Google Scholar 

  • A. Elafif, R.C. Karnatak, J.M. Esteva, C.M. Teodorescu, M. Womes, E. Bouisset, Physica B 208&209, 115 (1985)

  • R.N. Barnett, C.L. Cleveland, H. Häkkinen, W.D. Luedtke, C. Yannouleas, U. Landman, Eur. Phys. J. D 9, 95 (1999)

    Article  ADS  Google Scholar 

  • V. Pennanen, M. Huttula, H. Aksela, E. Nommiste, S. Aksela, J. Electron. Spectrosc. Relat. Phenom. 114–116, 169 (2000)

    Google Scholar 

  • M.A. Gaveau, M. Briant, P.R. Fournier, J.M. Mestdagh, J.P. Visticot, F. Calvo, S. Baudrand, F. Spiegelman, Eur. Phys. J. D 1, 153 (2002)

    Article  Google Scholar 

  • G. Ehrlich, Surf. Sci. 299, 628 (1994)

    Article  Google Scholar 

  • S. Uda, J. Cryst. Growth 140, 128 (1994)

    Article  ADS  Google Scholar 

  • J.W. Hovick, L.S. Barrell, J. Mol. Struct. 413, 615 (1997)

    Article  Google Scholar 

  • J. Urban, Cryst. Res. Technol. 33, 1009 (1998)

    Article  Google Scholar 

  • K.A. Jackson, Ind. Eng. Chem. 57, 28 (1965)

    Article  Google Scholar 

  • H. Reiss, J. Stat. Phys. 2, 83 (1970)

    Article  Google Scholar 

  • J.W.P. Schmelzer, J. Coll. Interf. Sci. 242, 354 (2001)

    Article  Google Scholar 

  • M. Amini, R.W. Hockney, J. Non Cryst. Sol. 31, 447 (1979)

    Article  Google Scholar 

  • M. Amini, D. Fincham, R.W. Hockney, J. Phys. C: Sol. St. Phys. 13, L221 (1980)

  • J. Jellineck, T.L. Beck, R.S. Berry, J. Chem. Phys. 84, 2783 (1986)

    Article  ADS  Google Scholar 

  • T.L. Beck, R.S. Berry, J. Chem. Phys. 88, 3910 (1988)

    Article  ADS  Google Scholar 

  • D.M.L. Thomas, L. Beck, R.S. Berry, J. Chem. Phys. 89, 1681 (1988)

    Article  Google Scholar 

  • D.J. Wales, R.S. Berry, J. Chem. Phys. 92, 4295 (1990)

    Google Scholar 

  • Y. Sakamoto, J. Phys. Soc. Jap. 59, 3925 (1990)

    Article  Google Scholar 

  • J.P. Rose, R.S. Berry, J. Chem. Phys. 96, 517 (1992)

    Article  ADS  Google Scholar 

  • J.P. Rose, R.S. Berry, J. Chem. Phys. 98, 3246 (1993)

    Article  ADS  Google Scholar 

  • J.P. Rose, R.S. Berry, J. Chem. Phys. 98, 3262 (1993)

    Article  ADS  Google Scholar 

  • F.M.S.S. Fernandes, L.A.T.P. Neves, Am. Inst. Phys. Conf. Proc. 330, 313 (1995)

    Google Scholar 

  • C.L. Cleveland, U. Landman, W.D. Luedtke, J. Phys. Chem. 98, 6272 (1994)

    Article  Google Scholar 

  • F. Calvo, P. Labastie, J. Phys. Chem. B 102, 2051 (1998)

    Article  Google Scholar 

  • F.M.S. Fernandes, P.C.R. Rodrigues (1998), http://elixir.dqb.fc.ul.pt

  • P.C.R. Rodrigues, F.M.S.S. Fernandes, Int. J. Quant. Chem. 84, 169 (2001)

    Article  Google Scholar 

  • A. Proykova, S. Pisov, R.S. Berry, J. Chem. Phys. 115, 8538 (2001)

    Article  Google Scholar 

  • F. Despa, R.S. Berry, Eur. Phys. J. D 16, 261 (2001)

    Article  ADS  Google Scholar 

  • A. Proykova, D. Nikolova, R.S. Berry, Phys. Rev. B 65, 085411 (2002)

    Article  ADS  Google Scholar 

  • P.C.R. Rodrigues, F.M.S.S. Fernandes, Eur. Phys. J. D (submitted)

  • R.O. Watts, I.J. McGee, Liquid State Chemical Physics (John Wiley and Sons, 1976), pp. 307–312

  • M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Claredon Press, Oxford, UK, 1987)

  • L.V. Woodcock, Chem. Phys. Lett. 10, 257 (1970)

    Article  Google Scholar 

  • L.V. Woodcock, K. Singer, Trans. Faraday Soc. 67, 12 (1971)

    Article  Google Scholar 

  • M.J.L. Sangster, M. Dixon, Adv. Phys. 25, 247 (1976)

    Article  ADS  Google Scholar 

  • F.J.A.L. Cruz, J.N.C. Lopes, J.C.G. Calado, M.E.M. da Piedade, J. Phys. Chem. B 109, 24473 (2005)

    Article  Google Scholar 

  • F.J.A.L. Cruz, J.N.C. Lopes, J.C.G. Calado, J. Phys. Chem. B 110, 4387 (2006)

    Article  Google Scholar 

  • F.J.A.L. Cruz, J.N.C. Lopes, J.C.G. Calado, Fluid Phase Equilib. 241, 51 (2006)

    Article  Google Scholar 

  • K. Huang, Statistical Mechanics (John Wiley and Sons, New York, 1987)

  • E.R. Buckle, A.R. Ubbelohde, Proc. Roy. Soc. A. 259, 325 (1960)

    ADS  Google Scholar 

  • NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by P.J. Linstrom, W.G. Mallar (National Institute of Standards and Technology, Gaithersburg MD, 20899, 2003), http://webbook.nist.gov

  • J.M.W. Chase, J. Phys. Chem. Ref. Data, Monograph 9 27, I (1998), http://webbook.nist.gov

  • S. Rice, W. Klemperer, J. Chem. Phys. 27, 643 (1957)

    Article  Google Scholar 

  • A.S. Dworkin, M.A. Bredig, J. Phys. Chem. 64, 269 (1960)

    Google Scholar 

  • P.G. Debenedetti, Metastable Liquids, Concepts and Principles (Princeton University Press, New Jersey, 1996)

  • L.V. Woodcock, C.A. Angell, P. Cheeseman, J. Chem. Phys. 65, 1565 (1976)

    Article  ADS  Google Scholar 

  • S. Fiechter, Sol. Energy Mater. Sol. Cells 83, 459 (2004)

    Article  Google Scholar 

  • Y. Sato, T. Ejima, M. Fukasawa, K. Abe, J. Phys. Chem. 94, 1991 (1990)

    Article  Google Scholar 

  • Y.G. Chushak, L.S. Bartell, J. Phys. Chem. B 105, 11605 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. M.S. Silva Fernandes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodrigues, P., Silva Fernandes, F. Melting, freezing and nucleation in nanoclusters of potassium chloride. Eur. Phys. J. D 40, 115–123 (2006). https://doi.org/10.1140/epjd/e2006-00128-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2006-00128-9

PACS.

Navigation