Skip to main content
Log in

Diode laser based detection and determination of pressure-induced broadening coefficients in the \({\mathsf{\nu_{1} + \nu_{3}}}\) combination band of ammonia

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

Nitrogen, oxygen, air and self-broadening coefficients have been measured in direct absorption for six transitions in the \(\nu_{1} + \nu_{3}\) combination band of ammonia at room temperature using a DFB diode laser operating at 1.51 μm. Absorption cross-sections for these strong lines, suitable for detection purposes, have been determined. Using 2f wavelength modulation spectroscopy we demonstrate a minimum detectable concentration of 500 ppb in a 75 cm path in 1 s at atmospheric pressure and present a simple method for measurement of broadening coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Linnerud, P. Kaspersen, T. Jaeger, Appl. Phys. B 67, 297 (1998)

    Article  Google Scholar 

  2. P.A. Martin, Chem. Soc. Rev. 31, 201 (2002)

    Article  Google Scholar 

  3. L. Lundsberg-Nielsen, F. Hegelund, F.M. Nicolaisen, J. Mol. Spec. 162, 230 (1993)

    Article  Google Scholar 

  4. M.E. Webber, D.S. Baer, R.K. Hanson, Appl. Opt. 40, 2031 (2001)

    Google Scholar 

  5. R. Claps, F.V. Englich, D.P. Leleux, D. Richter, F.K. Tittel, R.F. Curl, Appl. Opt. 40, 4387 (2001)

    Google Scholar 

  6. M. Fehér, P.A. Martin, A. Rohrbacher, A.M. Soliva, J.P. Maier, Appl. Opt. 32, 2028 (1993)

    Google Scholar 

  7. A. Miklós, M. Fehér, Infrared Phys. Technol. 37, 21 (1996)

    Article  Google Scholar 

  8. G. Modugno, C. Corsi, Infrared Phys. Technol. 40, 93 (1999)

    Article  Google Scholar 

  9. R. Peeters, G. Berden, A. Apituley, G. Meijer, App. Phys. B 71, 231 (2000)

    Google Scholar 

  10. A.R. Awtry, J.H. Miller, Appl. Phys. B 75, 255 (2002)

    Article  Google Scholar 

  11. A.S. Pine, V.N. Markov, G. Buffa, O. Tarrini, J. Quant. Spec. Rad. Trans. 50, 337 (1993)

    Article  Google Scholar 

  12. V.N. Markov, A.S. Pine, G. Buffa, O. Tarrini, J. Quant. Spec. Rad. Trans. 50, 167 (1993)

    Article  Google Scholar 

  13. V.S. Letokhov, A.G. Platova, O.A. Tumanov, Opt. Spectrosc. 37, 29 (1974)

    Google Scholar 

  14. M. Fabian, R. Schieder, K.M.T. Yamada, G. Winnewiser, J. Mol. Spec. 177, 294 (1996)

    Article  Google Scholar 

  15. G. Baldacchini, A. Bizzarri, L. Nencici, V. Sorge, J. Quant. Spec. Rad. Trans. 43, 371 (1990)

    Article  Google Scholar 

  16. G. Baldacchini, G. Buffa, O. Tarrini, Nuovo Cim. 13, 719 (1991)

    Google Scholar 

  17. H. Aroui, M. Broquier, A. Picard-Bersellini, J.P. Bouanich, M. Chevalier, S. Gherissi, J. Quant. Spec. Rad. Trans. 60 1011 (1998)

  18. A. Lucchesini, D. Pelliccia, C. Gabbanini, S. Gozzini, I. Longo, Nuovo Cim. D 16, 117 (1994)

    Google Scholar 

  19. P. Werle, Spectrochim. Acta A 54, 197 (1998)

    Article  Google Scholar 

  20. J.A. Silver, Appl. Opt. 31, 707 (1992)

    Google Scholar 

  21. C. Yelleswarapu, A. Sharma, J. Quant. Spectr. Rad. Trans. 72, 733 (2002)

    Article  Google Scholar 

  22. M. De Rosa, A. Ciucci, D. Pelliccia, C. Gabbanini, S. Gozzini, A. Lucchesini, Opt. Comm. 147, 55 (1998)

    Article  Google Scholar 

  23. A. Lucchesini, S. Gozzini, Eur. Phys. J. D 22, 209 (2003)

    Google Scholar 

  24. HITRAN’2000 database (v 11.0)

  25. P.L. Varghese, R.K. Hanson, Appl. Opt. 23, 2376 (1984)

    Google Scholar 

  26. P. Minguzzi, A. DiLieto, J. Mol. Spectrosc. 109, 388 (1985)

    Google Scholar 

  27. A.N. Dharamsi, A.M. Bullock, Appl. Phys. B 63, 283 (1996)

    Article  Google Scholar 

  28. B.E. Grossmann, E.V. Browell, J. Mol. Spec. 138, 562 (1989)

    Article  Google Scholar 

  29. A.S. Pine, J.P. Looney, J. Mol. Spec. 122, 41 (1987)

    Article  Google Scholar 

  30. A. Schiffman, D.J. Nesbitt, J. Chem. Phys. 100, 2677 (1994)

    Article  Google Scholar 

  31. A. Hofzumahaus, F. Stuhl, J. Chem. Phys. 82, 3152 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hancock.

Additional information

Received: 13 August 2003, Published online: 21 October 2003

PACS:

33.20.Ea Infrared spectra - 33.20.Vq Vibration-rotation analysis - 33.70.Jg Line and band widths, shapes, and shifts

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gibb, J.S., Hancock, G., Peverall, R. et al. Diode laser based detection and determination of pressure-induced broadening coefficients in the \({\mathsf{\nu_{1} + \nu_{3}}}\) combination band of ammonia. Eur. Phys. J. D 28, 59–66 (2004). https://doi.org/10.1140/epjd/e2003-00289-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00289-y

Keywords

Navigation