Skip to main content
Log in

Power-law decay of collisionally excited amino acids and quenching by radiative cooling

  • OriginalPaper
  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

We have investigated the time dependence of the fragmentation of protonated amino acids stored at 22 keV in the electrostatic ring ELISA. The ions were produced in an electrospray source and after bunching in a quadrupole trap they were excited by collisions in a Ne gas. As in earlier studies of metal clusters and fullerenes produced in “hot” ion sources we find that the dissociation of metastable molecules follows approximately a 1/t decay law until a time \(\tau\) after which the yield falls off much more rapidly. We interpret this reduction as a result of radiative cooling with a characteristic cooling time, \(\tau_c \simeq G\tau\), where G is the magnitude of the exponent in an Arrhenius expression for the rate of the dominant fragmentation process. The values of \(\tau\) obtained from fits to the data are in the range 9-17 ms corresponding to cooling times of a few hundred milliseconds, in good accord with the expected rate of cooling by emission from IR-active vibrations. The power-law behaviour for \(t < \tau\) varies somewhat between the different amino acids, with powers between -0.9 and -1.1. We argue that this may be due to a competition between fragmentation channels with different Arrhenius parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.H. Klein-Weile, P. Simon, H.-G. Rubahn, Phys. Rev. Lett. 80, 45 (1998)

    Article  Google Scholar 

  2. M. Simon, F. Träger, A. Assion, B. Lang, S. Voll, G. Gerber, Chem. Phys. Lett. 296, 579 (1998)

    Article  Google Scholar 

  3. J.U. Andersen, P. Hvelplund, S.B. Nielsen, U.V. Pedersen, S. Tomita, Phys. Rev. A 65, 053202 (2002)

    Article  Google Scholar 

  4. P.B. Armentrout, Int. J. Mass Spectrom. 200, 219 (2000)

    Article  Google Scholar 

  5. K. Hansen, J.U. Andersen, P. Hvelplund, S.P. Møller, U.V. Pedersen, V.V. Petrunin, Phys. Rev. Lett. 87, 123401 (2001)

    Google Scholar 

  6. K. Hansen, O. Echt, Phys. Rev. Lett. 78, 2337 (1997)

    Article  Google Scholar 

  7. D. Thölmann, D.S. Tonner, T.B. McMahon, J. Phys. Chem. 98, 2002 (1994)

    Google Scholar 

  8. R.C. Dunbar, T.B. McMahon, D. Thölmann, D.S. Tonner, D.R. Salahub, D. Wei, J. Am. Chem. Soc. 117, 12819 (1996)

    Google Scholar 

  9. W.D. Price, P.D. Schnier, R.A. Jockush, E.F. Strittmatter, E.R. Williams, J. Am. Chem. Soc. 118, 10640 (1996)

    Article  Google Scholar 

  10. D.J. Butcher, K.G. Asano, D.E. Goeringer, S.A. McLuckey, J. Phys. Chem. A 103, 8664 (1999)

    Article  Google Scholar 

  11. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995)

  12. W.A. de Heer, K. Selby, V. Kresin, J. Masui, M. Vollmer, A. Chatelain, W.D. Knight, Phys. Rev. Lett. 59, 1805 (1987)

    Article  Google Scholar 

  13. C. Ellert, M. Schmidt, C. Schmitt, T. Reiners, H. Haberland, Phys. Rev. Lett. 75, 1731 (1995)

    Article  Google Scholar 

  14. J.U. Andersen, E. Bonderup, Eur. Phys. J. D 11, 413 (2000)

    Article  Google Scholar 

  15. P. Boissel, P. de Parseval, P. Marty, G. Lefévre, J. Chem. Phys. 106, 4973 (1997)

    Article  Google Scholar 

  16. R.C. Dunbar, Mass Spectr. Rev. 11, 309 (1992)

    Google Scholar 

  17. J.U. Andersen, C. Brink, P. Hvelplund, M.O. Larsson, B. Bech Nielsen, H. Shen, Phys. Rev. Lett. 77, 3991 (1996)

    Article  Google Scholar 

  18. J.U. Andersen, C. Gottrup, K. Hansen, P. Hvelplund, M.O. Larsson, Eur. Phys. J. D 17, 189 (2001)

    Article  Google Scholar 

  19. S.P. Møller, Nucl. Instrum. Meth. A 394, 281 (1997)

    Google Scholar 

  20. J.U. Andersen, P. Hvelplund, S. Brøndsted Nielsen, S. Tomita, H. Wahlgreen, S. Pape Møller, U.V. Pedersen, J.S. Forster, T.J.D. Jørgensen, Rev. Sci. Instrum. 73, 1284 (2002)

    Article  Google Scholar 

  21. K.G. Asano, D.J. Butcher, D.E. Goeringer, S.A. McLuckey, J. Mass Spectrom. 34, 691 (1999)

    Article  Google Scholar 

  22. N. Bohr, Nature 137, 344 (1936)

    MATH  Google Scholar 

  23. V. Weisskopf, Phys. Rev. 52, 295 (1937)

    MATH  Google Scholar 

  24. D.H.E. Gross, P.A. Hervieux, Z. Phys. D 35, 27 (1995)

    Google Scholar 

  25. K. Hansen, Philos. Mag. B 79, 1413 (1999)

    Article  Google Scholar 

  26. J.U. Andersen, E. Bonderup, K. Hansen, J. Chem. Phys. 114, 6518 (2001)

    Article  Google Scholar 

  27. J.U. Andersen, E. Bonderup, K. Hansen, J. Phys. B: At. Mol. Opt. Phys. 35, R1 (2002)

  28. C.E. Klots, Z. Phys. D 21, 335 (1991), and references therein

    Google Scholar 

  29. J. Lindhard, V. Nielsen, M. Scharff, K. Dan. Vid. Selsk. Mat. Fys. Medd. 36, 10 (1968)

    Google Scholar 

  30. I.O. Papayannopoulos, Mass Spectr. Rev. 14, 50 (1995)

    Google Scholar 

  31. U. Frenzel, U. Hammer, H. Westje, D. Kreisle, Z. Phys. D 40, 108 (1997)

    Article  Google Scholar 

  32. R. Mitzner, E.E.B. Campbell, J. Chem. Phys. 103, 2445 (1995)

    Article  Google Scholar 

  33. C.I. Frum, R. Engleman Jr, H.G. Hedderich, P.F. Bernath, L.D. Lamb, D.R. Huffman, Chem. Phys. Lett. 176, 504 (1991)

    Article  Google Scholar 

  34. R.C. Dunbar, J.H. Chen, H.Y. So, B. Asamoto, J. Chem. Phys. 86, 2081 (1986)

    Article  Google Scholar 

  35. C. Walther, G. Dietrich, W. Dostal, K. Hansen, S. Krückeberg, K. Lützenkirchen, L. Schweikhard, Phys. Rev. Lett. 83, 3816 (1999)

    Article  Google Scholar 

  36. R.C. Dunbar, J. Phys. Chem. 90, 7369 (1989)

    Article  Google Scholar 

  37. M.J. Frisch , Gaussian 98, Revision A.7, Gaussian Inc., Pittsburgh PA, 1998

  38. L. Thorne, J.L. Beauchamp, in Gas Phase Chemistry, edited by M.T. Bowers (Academic, Orlando, Fl., 1984), Vol. 3

  39. M.F. Jarrold, Annu. Rev. Phys. Chem. 51, 179 (2000)

    Article  Google Scholar 

  40. C. Lifshitz, Int. J. Mass Spectrom. 198, 1 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. U. Andersen.

Additional information

Received: 27 February 2003, Published online: 29 April 2003

PACS:

82.39.-k Chemical kinetics in biological systems - 82.40.-g Chemical kinetics and reactions: special regimes and techniques - 87.15.-v Biomolecules: structure and physical properties

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, J.U., Cederquist, H., Forster, J.S. et al. Power-law decay of collisionally excited amino acids and quenching by radiative cooling. Eur. Phys. J. D 25, 139–148 (2003). https://doi.org/10.1140/epjd/e2003-00093-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00093-9

Keywords

Navigation