Skip to main content
Log in

Final-state radiation in electron-positron annihilation into a pion pair

  • theoretical physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

The process of e + e - annihilation into a \(\pi^ + \pi^-\) pair with radiation of a photon is considered. The amplitude of the reaction \(e^ + e^- \to \pi^ + \pi^- \gamma\) consists of the model independent initial-state radiation (ISR) and model dependent final-state radiation (FSR). The general structure of the FSR tensor is constructed from Lorentz covariance, gauge invariance and discrete symmetries in terms of the three invariant functions. To calculate these functions we apply chiral perturbation theory (ChPT) with vector and axial-vector mesons. The contribution of the \(e^ + e^- \to \pi^ + \pi^- \gamma\) process to the muon anomalous magnetic moment is evaluated, and results are compared with the dominant contribution in the framework of a hybrid model, consisting of VMD and point-like scalar electrodynamics. The developed approach allows us also to calculate the \(\pi^ + \pi^-\) charge asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Eidelman, F. Jegerlehner, Z. Phys. C 67, 585 (1995); R. Alemany, M. Davier, A. Höcker, Eur. Phys. J. C 2, 123 (1998); M. Davier, S. Eidelman, A. Höcker, Z. Zhang, Eur. Phys. J. C 27, 497 (2003) [hep-ph/0208177]

    ADS  Google Scholar 

  2. R.M. Carey et al. , Proposal of the BNL Experiment E969, 2004 (www.bnl.gov/henp/docs/pac0904/P969.pdf)

  3. G. Cataldi, A.G. Denig, W. Kluge, S. Müller, G. Venanzoni, in Frascati 1999, Physics and detectors for DA\(\Phi \)NE, p. 569; A. Aloisio et al. , The KLOE Collaboration, hep-ex/0107023; A.G. Denig, The KLOE Collaboration, Nucl. Phys. B (Proc. Suppl.) 116, 243 (2003) [hep-ex/0211024]; A. Aloisio et al. , The KLOE Collaboration, hep-ex/0312056; A. Aloisio et al. , The KLOE Collaboration, hep-ex/0407048

    ADS  Google Scholar 

  4. E.P. Solodov, The BaBar Collaboration, hep-ex/0107027; G. Sciolla, The BABAR Collaboration, Nucl. Phys. B (Proc. Suppl.) 99, 135 (2001) [hep-ex/0101004]; N. Berger, hep-ex/0209062

    ADS  Google Scholar 

  5. M. Benayoun, S.I. Eidelman, V.N. Ivanchenko, Z.K. Silagadze, Mod. Phys. Lett. A 14, 2605 (1999)

    ADS  Google Scholar 

  6. Min-Shin Chen, P.M. Zerwas, Phys. Rev. D 11, 58 (1975)

    Article  ADS  Google Scholar 

  7. A.B. Arbuzov, E.A. Kuraev, N.P. Merenkov, L. Trentadue, JHEP 12, 009 (1998); M. Konchatnij, N.P. Merenkov, JETP Lett. 69, 811 (1999)

    ADS  Google Scholar 

  8. S. Binner, J.H. Kühn, K. Melnikov, Phys. Lett. B 459, 279 (1999); S. Spagnolo, Eur. Phys. J. C 6, 637 (1999); J. Kühn, Nucl. Phys. B (Proc. Suppl.) 98, 2 (2001)

    Article  ADS  Google Scholar 

  9. R.R. Akhmetshin et al. , CMD-2 Collaboration, Phys. Lett. B 527, 161 (2002) [hep-ex/0112031]

    Article  Google Scholar 

  10. J.Z. Bai et al. , BES Collaboration, Phys. Rev. Lett. 84, 594 (2000) [hep-ex/0102003].

    Google Scholar 

  11. V.N. Baier, V.A. Khoze, Sov. Phys. JETP 21, 629 (1965); 21, 1145 (1965)

    ADS  Google Scholar 

  12. V.A. Khoze et al. , Eur. Phys. J. C 25, 199 (2002)

    ADS  Google Scholar 

  13. H. Czyż, A. Grzelinska, J. Kühn, G. Rodrigo, Eur. Phys. J. C 33, 333 (2004) [hep-ph/0308312]; H. Czyż, A. Grzelinska, hep-ph/0402030

    ADS  Google Scholar 

  14. G. Ecker, J. Gasser, A. Pich, E. de Rafael, Nucl. Phys. B 321, 311 (1989); G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Phys. Lett. B 223, 425 (1989)

    Article  ADS  Google Scholar 

  15. G. Ecker, R. Unterdorfer, Eur. Phys. J. C 24, 535 (2002) [hep-ph/0203075]

    MathSciNet  Google Scholar 

  16. J.F. Donoghue, B.R. Holstein, D. Wyler, Phys. Rev. D 47, 2089 (1993); J.F. Donoghue, B.R. Holstein, Phys. Rev. D 48, 137 (1993)

    ADS  Google Scholar 

  17. G. Ecker, A. Pich, E. de Rafael, Phys. Lett. B 237, 481 (1990)

    ADS  Google Scholar 

  18. P.D. Ruiz-Femen\’ia, A. Pich, J. Portolés, JHEP 0307, 003 (2003) [hep-ph/0306157]

    ADS  Google Scholar 

  19. S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004) (http://pdg.lbl.gov)

    Article  ADS  Google Scholar 

  20. S.J. Brodsky, E. de Rafael, Phys. Rev. 68, 1620 (1968)

    ADS  Google Scholar 

  21. S.K. Dubinsky, A.Yu. Korchin, N.P. Merenkov, Zh. Eksp. Teor. Fiz. 126, 259 (2004) [hep-ph/0407191]; JETP 99, 225 (2004)

    Google Scholar 

  22. C. Unkmeir, A. Ocherashvili, T. Fuchs, M.A. Moinester, S. Scherer, Phys. Rev. C 65, 015206 (2002) [hep-ph/0107020]

    ADS  Google Scholar 

  23. R. Tarrach, Nuovo Cimento 28 A, 409 (1975)

    Article  ADS  Google Scholar 

  24. D. Drechsel, G. Knöchlein, A. Metz, S. Scherer, Phys. Rev. C 55, 424 (1997) [nucl-th/9608061]

    ADS  Google Scholar 

  25. E. Byckling, K. Kajantie, Particle kinematics (John Wiley and Sons, London, New York, Sydney, Toronto 1973)

  26. J. Bijnens, E. Pallante, Mod. Phys. Lett. A 11, 1069 (1996) [hep-ph/9510338]

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Korchin.

Additional information

Received: 15 November 2004, Published online: 9 February 2005

PACS:

12.20.-m; 12.39.Fe; 13.40.-f; 13.66.Bc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubinsky, S., Korchin, A., Merenkov, N. et al. Final-state radiation in electron-positron annihilation into a pion pair. Eur. Phys. J. C 40, 41–54 (2005). https://doi.org/10.1140/epjc/s2004-02109-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-02109-7

Keywords

Navigation