Skip to main content
Log in

High-temperature limit of Landau-gauge Yang-Mills theory

  • theoretical physics
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

The infrared properties of the high-temperature limit of Landau-gauge Yang-Mills theory are investigated. In a first step the high-temperature limit of the Dyson-Schwinger equations is taken. The resulting equations are identical to the Dyson-Schwinger equations of the dimensionally reduced theory, a three-dimensional Yang-Mills theory coupled to an effective adjoint Higgs field. These equations are solved analytically in the infrared and ultraviolet, and numerically for all Euclidean momenta. We find infrared enhancement for the Faddeev-Popov ghosts, infrared suppression for transverse gluons and a mass for the Higgs. These results imply long-range interactions and over-screening in the chromomagnetic sector of high-temperature Yang-Mills theory while in the chromoelectric sector only screening is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Alkofer, C.S. Fischer, H. Reinhardt, L. von Smekal, Phys. Rev. D 68, 045003 (2003) [hep-th/0304134]

    Article  Google Scholar 

  2. J.C. Taylor, Nucl. Phys. B 33, 436 (1971); W.J. Marciano, H. Pagels, Phys. Rept. 36, 137 (1978)

    Article  Google Scholar 

  3. F. Karsch, E. Laermann, hep-lat/0305025, and references therein

  4. A. Maas, B. Grüter, R. Alkofer, J. Wambach, Proceedings of the 40th International School of Subnuclear Physics, August 29th-September 7th, Erice, Italy, edited by A. Zichichi (World Scientific 2003); hep-ph/0210178

  5. B. Grüter, R. Alkofer, A. Maas, J. Wambach, hep-ph/0408282; Proceedings of the Erice summer school on Nuclear Physics, September 16-24, 2003, Erice, Italy; hep-ph/0401164

  6. F.J. Dyson, Phys. Rev. 75, 1736 (1949); J.S. Schwinger, Proc. Nat. Acad. Sci. 37, 452 (1951); Proc. Nat. Acad. Sci. 37, 455 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  7. L. von Smekal, A. Hauck, R. Alkofer, Annals Phys. 267, 1 (1998) [hep-ph/9707327]; L. von Smekal, R. Alkofer, A. Hauck, Phys. Rev. Lett. 79, 3591 (1997) [hep-ph/9705242]

    Article  MATH  Google Scholar 

  8. C.S. Fischer, R. Alkofer, Phys. Rev. D 67, 094020 (2003) [hep-ph/0301094]

    Article  Google Scholar 

  9. P. Boucaud, J.P. Leroy, J. Micheli, O. Pene, C. Roiesnel, JHEP 9812, 004 (1998) [hep-ph/9810437]; P. Boucaud, J.P. Leroy, J. Micheli, O. Pene, C. Roiesnel, JHEP 9810, 017 (1998) [hep-ph/9810322]; H. Nakajima, S. Furui, hep-lat/0309165; S. Furui, H. Nakajima, hep-lat/0309166

    Google Scholar 

  10. R. Alkofer, W. Detmold, C.S. Fischer, P. Maris, Phys. Rev. D 70, 014014 (2004) [hep-ph/0309077]; hep-ph/0309078

    Article  Google Scholar 

  11. K. Osterwalder, R. Schrader, Commun. Math. Phys. 31, 83 (1973); 42, 281 (1975)

    MATH  Google Scholar 

  12. R. Oehme, W. Zimmermann, Phys. Rev. D 21, 1661 (1980); D 21, 471 (1980)

    Article  Google Scholar 

  13. T. Kugo, I. Ojima, Prog. Theor. Phys. Suppl. 66, 1 (1979)

    Google Scholar 

  14. T. Kugo, hep-th/9511033

  15. D. Zwanziger, Phys. Rev. D 69, 016002 (2004) [hep-ph/0303028]

    Article  Google Scholar 

  16. R.J. Rivers, Path integral methods in quantum field theory (Cambridge University Press, Cambridge 1987)

  17. R. Alkofer, L. von Smekal, Phys. Rept. 353, 281 (2001) [hep-ph/0007355]

    Article  MATH  Google Scholar 

  18. C.D. Roberts, S.M. Schmidt, Prog. Part. Nucl. Phys. 45, S1 (2000) [nucl-th/0005064]

  19. A.K. Das, Finite temperature field theory (World Scientific, Singapore 1997)

  20. J.I. Kapusta, Finite temperature field theory (Cambridge University Press, Cambridge 1989)

  21. H.A. Weldon, Phys. Rev. D 26, 1394 (1982)

    Article  Google Scholar 

  22. K. Kajantie, M. Laine, K. Rummukainen, M.E. Shaposhnikov, Nucl. Phys. B 458, 90 (1996)

    Article  Google Scholar 

  23. A. Cucchieri, F. Karsch, P. Petreczky, Phys. Rev. D 64, 036001 (2001) [hep-lat/0103009]

    Article  Google Scholar 

  24. C. Lerche, L. von Smekal, Phys. Rev. D 65, 125006 (2002) [hep-ph/0202194]

    Article  Google Scholar 

  25. W. Schleifenbaum, A. Maas, J. Wambach, R. Alkofer, in preparation

  26. N. Brown, M.R. Pennington, Phys. Rev. D 38, 2266 (1988)

    Article  Google Scholar 

  27. C.S. Fischer, R. Alkofer, Phys. Lett. B 536, 177 (2002) [hep-ph/0202202]; C.S. Fischer, R. Alkofer, H. Reinhardt, Phys. Rev. D 65, 094008 2002 [hep-ph/0202195]; R. Alkofer, C.S. Fischer, L. von Smekal, Acta Phys. Slov. 52, 191 (2002) [hep-ph/0205125]; C.S. Fischer, PhD thesis, U. of Tuebingen, hep-ph/0304233

    Article  MATH  Google Scholar 

  28. V.N. Gribov, Nucl. Phys. B 139, 1 (1978)

    Article  Google Scholar 

  29. D. Zwanziger, Nucl. Phys. B 412, 657 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. P. van Baal, hep-th/9711070

  31. A. Cucchieri, Nucl. Phys. B 521, 365 (1998); T.D. Bakeev, E.M. Ilgenfritz, V.K. Mitrjushkin, M. Mueller-Preussker, hep-lat/0311041

    Article  Google Scholar 

  32. R.P. Feynman, Nucl. Phys. B 188, 479 (1981)

    Article  MathSciNet  Google Scholar 

  33. D. Zwanziger, Phys. Rev. D 65, 094039 (2002) [hep-th/0109224]

    Article  Google Scholar 

  34. S. Elitzur, Phys. Rev. D 12, 3978 (1975)

    Article  Google Scholar 

  35. A. Maas, PhD thesis, Darmstadt University of Technology, 2004, to be published

  36. A. Maas (in preparation)

  37. A. Cucchieri, T. Mendes, A.R. Taurines, Phys. Rev. D 67, 091502 (2003) [hep-lat/0302022]

    Article  Google Scholar 

  38. J.M. Luttinger, J.C. Ward, Phys. Rev. 118, 1417 (1960); J.M. Cornwall, R. Jackiw, E. Tomboulis, Phys. Rev. D 10, 2428 (1974)

    Article  MATH  Google Scholar 

  39. B.J. Haeri, Phys. Rev. D 48, 5930 (1993) [hep-ph/9309224]

    Article  Google Scholar 

  40. M.E. Carrington, G. Kunstatter, H. Zaraket, hep-ph/0309084; M.E. Carrington, hep-ph/0401123

  41. D. Zwanziger, hep-ph/0407103

  42. A. Cucchieri, T. Mendes, A.R. Taurines, hep-lat/0406020

  43. G.S. Bali, J. Fingberg, U.M. Heller, F. Karsch, K. Schilling, Phys. Rev. Lett. 71, 3059 (1993) [hep-lat/9306024]

    Article  Google Scholar 

  44. A. Nakamura, T. Saito, S. Sakai, Phys. Rev. D 69, 014506 (2004) [hep-lat/0311024]

    Article  Google Scholar 

  45. T. Appelquist, R.D. Pisarski, Phys. Rev. D 23, 2305 (1981)

    Article  Google Scholar 

  46. D. Zwanziger, hep-ph/0312254; C. Feuchter, H. Reinhardt, hep-th/0402106

  47. D. Epple, diploma thesis, University of Tübingen, 2003

  48. M.E. Peskin, D.V. Schroeder, An introduction to quantum field theory (Perseus Books, Massachusetts 1997)

Download references

Author information

Authors and Affiliations

Authors

Additional information

Received: 5 August 2004, Published online: 21 September 2004

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maas, A., Wambach, J., Grüter, B. et al. High-temperature limit of Landau-gauge Yang-Mills theory. Eur. Phys. J. C 37, 335–357 (2004). https://doi.org/10.1140/epjc/s2004-02004-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2004-02004-3

Keywords

Navigation