Skip to main content
Log in

A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP

  • Original Paper
  • Published:
The European Physical Journal C - Particles and Fields Aims and scope Submit manuscript

Abstract.

Infrared and collinear safe event shape distributions and their mean values are determined in \({\mathrm{e^+e^-}}\) collisions at centre-of-mass energies between 45 and 202GeV. A phenomenological analysis based on power correction models including hadron mass effects for both differential distributions and mean values is presented. Using power corrections, \(\alpha_s\) is extracted from the mean values and shapes. In an alternative approach, renormalisation group invariance (RGI) is used as an explicit constraint, leading to a consistent description of mean values without the need for sizeable power corrections. The QCD \(\beta\)-function is precisely measured using this approach. From the DELPHI data on Thrust, including data from low energy experiments, one finds

$$\beta_0 = 7.86 \pm 0.32$$

for the one loop coefficient of the \(\beta\)-function or, assuming QCD,

$$n_{\mathrm{f}} = 4.75 \pm 0.44 $$

for the number of active flavours. These values agree well with the QCD expectation of \(\beta_0=7.67\) and \(n_{\mathrm{f}}=5\). A direct measurement of the full logarithmic energy slope excludes light gluinos with a mass below 5GeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • 1. D. E. Groom Eur. Phys. J. C 15, 1 (2000)

  • 2. M. Beneke. Phys. Rep. 317, 1 (1999)

  • 3. G. Sterman. (1998)

  • 4. A. Dhar. Phys. Lett. B 128, 407 (1983)

  • 5. A. Dhar and V. Gupta. Phys. Rev. D 29, 2822 (1984)

  • 6. A. Dhar and V. Gupta. Pramana 21, 207 (1983)

  • 7. J. G. Korner, F. Krajewski, and A. A. Pivovarov. Phys. Rev. D 63, 036001 (2001)

    Google Scholar 

  • 8. D.E. Soper and L.R. Surguladze. Phys. Rev. D 54, 4566 (1996)

  • 9. Yu. L. Dokshitzer and B.R. Webber. hep-ph/9704298, 1997

  • 10. Yu. L. Dokshitzer et.al. Nucl. Phys. B 511, 396 (1997)

  • 11. Yu. L. Dokshitzer, et.al. JHEP 9805, 003 (1998)

  • 12. Yu. L. Dokshitzer and B.R. Webber. Phys. Lett. B 352, 451 (1995)

  • 13. D. Wicke. Nucl. Phys. Proc. Suppl.64, 27 (1998)

    Google Scholar 

  • 14. P. Abreu Z. Phys. C 73, 229 (1997)

  • 15. K. Hamacher. Nucl. Phys. Proc. Suppl. B 54A, 34 (1997)

  • 16. DELPHI Coll., P. Abreu Nucl. Instr. Meth. A 303, 233 (1991)

    Google Scholar 

  • 17. DELPHI Coll., P. Abreu Nucl. Instr. Meth. A 378, 57 (1996)

    Google Scholar 

  • 18. DELPHI Coll., P. Abreu Phys. Lett. B 456, 322 (1999)

    Google Scholar 

  • 19. D. Wicke. PhD thesis, BUGH Wuppertal, 1999, WU DIS 99-5

  • 20. P. Abreu Nucl. Instrum. Meth. A 427, 487 (1999)

    Google Scholar 

  • 21. T. Sjostrand Comput. Phys. Commun. 135, 238 (2001)

  • 22. DELPHI Coll., P. Abreu Z. Phys. C 73, 11 (1996)

    Google Scholar 

  • 23. E.L. Berger, X. Guo, and J. Qiu. Phys. Rev. D 54, 5470 (1996)

  • 24. S. Brandt Phys. Lett. 15, 57 (1964)

  • 25. G. Parisi. Phys. Lett. B 74, 65 (1978)

  • 26. L. Clavelli. Phys. Lett. B 85, 111 (1979)

  • 27. S. Catani, G. Turnock, and B. R. Webber. Phys. Lett. B 295, 269 (1992)

  • 28. C.L. Basham Phys. Rev. Lett. 41, 1585 (1978)

  • 29. Y. Ohnishi and H. Masuda SLAC-PUB-6560

  • 30. G. P. Salam and D. Wicke. JHEP 05, 061 (2001)

  • 31. Ralf Reinhardt. PhD thesis, BUGH Wuppertal, 2001, WUB-DIS 2001-6. http://elpub.bib.uni-wuppertal.de/edocs/documente/ fb08/diss2001/reinhardt/d080113.pdf

  • 32. Yu.L. Dokshitzer. hep-ph/9911299, 1999

  • 33. Yu. L. Dokshitzer, G. Marchesini, G. P. Salam. Eur. Phys. J. Direct C 03, 1 (1999)

    Google Scholar 

  • 34. Yu. L. Dokshitzer, G. Marchesini, and B. R. Webber. JHEP 07, 012 (1999)

  • 35. S. Catani Nucl. Phys. B 407, 3 (1993)

  • 36. S. Catani and B.R.Webber. JHEP 10, 005 (1997)

  • 37. B. R. Webber, hep-ph/9510283

  • 38. R. K. Ellis, D. A. Ross, and A. E. Terrano. Nucl. Phys B 178, 412 (1981)

  • 39. CERN 89-08 Vol. 1, 1989

  • 40. S. Catani and M.H. Seymour. Phys. Lett. B 378, 287 (1996)

  • 41. AMY Coll., Y.K. Li Phys. Rev. D 41, 2675 (1990)

    Google Scholar 

  • 42. DELPHI Coll., P. Abreu Eur. Phys. J. C 14, 557 (2000)

    Google Scholar 

  • 43. G. Grunberg. Phys. Rev. D 29, 2315 (1984)

  • 44. P. M. Stevenson. Phys. Rev. D 23, 2916 (1981)

    Google Scholar 

  • 45. M. Beneke. Phys. Lett. B 307, 154 (1993)

  • 46. C.J. Maxwell, D.T. Barclay, M.T. Reader. Phys. Rev. D 49, 3480 (1994)

    Google Scholar 

  • 47. W. Celmaster and R. J. Gonzalves. Phys. Rev. D 20, 1420 (1979)

  • 48. J. M. Campbell, E. W. N. Glover, C. J. Maxwell. Phys. Rev. Lett. 81, 1568 (1998)

    Google Scholar 

  • 49. M. Acciarri Phys. Lett. B 489, 65 (2000)

  • 50. S. Bethke. J. Phys. G 26, R27 (2000)

Download references

Author information

Consortia

Additional information

Received: 12 November 2002, Revised: 20 February 2003, Published online: 18 June 2003

Rights and permissions

Reprints and permissions

About this article

Cite this article

The DELPHI Collaboration. A study of the energy evolution of event shape distributions and their means with the DELPHI detector at LEP. Eur. Phys. J. C 29, 285–312 (2003). https://doi.org/10.1140/epjc/s2003-01198-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s2003-01198-0

Keywords

Navigation