Skip to main content
Log in

Decoupling of the right-handed neutrino contribution to the Higgs mass in supersymmetric models

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

An Erratum to this article was published on 08 July 2021

This article has been updated

Abstract

Recently, it has been argued that in the supersymmetric extension of the seesaw-extended Standard Model, heavy right-handed neutrinos and sneutrinos may give corrections as large as a few GeV to the mass of the lightest neutral CP-even Higgs boson, even if the soft supersymmetry-breaking parameters are of order the electroweak scale. The presence of such large corrections would render precise Higgs masses incalculable from measurable low-energy parameters. We show that this is not the case: decoupling is preserved in the appropriate sense and right-handed (s)neutrinos, if they exist, have negligible impact on the physical Higgs masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

Notes

  1. These contributions to m h are therefore quite distinct from corrections that have been found in certain parameter ranges of the NMSSM with TeV-scale right-handed neutrinos [38].

  2. In our notation, the sum of all one-loop Feynman graphs contributing to the ϕϕ (ϕ=h,A,H) and ZZ self-energy functions are denoted by −iC ϕϕ (p 2) and iA ZZ (p 2)g μν +iB ZZ (p 2)p μν , respectively, where p is the four-momentum of the incoming boson. Only \(\varSigma_{ZZ}(p^{2})\equiv \operatorname{Re} A_{ZZ}(p^{2})\) and \(\varSigma_{\phi\phi}(p^{2})\equiv \operatorname{Re} C_{\phi\phi}(p^{2})\) are needed to define the physical on-shell boson masses. Note that the opposite sign choice in the definition of Σ(p 2) is sometimes employed in the literature.

  3. To simplify the typography, we remove all P subscripts. However, all masses in the subsequent formulas should now be interpreted as (finite) physical masses.

  4. The choice of evaluating the p 2-derivatives of the self-energies at p 2=0 is one of many possible choices. Employing a different value of p 2 would simply yield a tanβ definition that differs at the one-loop level. In the approximations used in this paper, the difference in the two definitions of tanβ is subdominant and can thus be neglected.

  5. The case where \(m_{\tilde{R}}\) and/or B ν are parametrically larger than the electroweak scale will be briefly considered in Sect. 3.4.

  6. Note that the self-energy and tadpole functions in the conventions of Ref. [27] differ by an overall sign from those defined in this paper. This is the origin of the minus sign in Eq. (3.10).

  7. Note that the self-energy and tadpole functions in the conventions of Ref. [27] differ by an overall sign from those defined in this paper.

References

  1. S. Chatrchyan et al. (CMS Collaboration), Phys. Lett. B 716, 30 (2012). arXiv:1207.7235 [hep-ex]

    Article  ADS  Google Scholar 

  2. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 716, 1 (2012). arXiv:1207.7214 [hep-ex]

    Article  ADS  Google Scholar 

  3. S. Heinemeyer, O. Stal, G. Weiglein, Phys. Lett. B 710, 201 (2012). arXiv:1112.3026 [hep-ph]

    Article  ADS  Google Scholar 

  4. P. Draper, P. Meade, M. Reece, D. Shih, Phys. Rev. D 85, 095007 (2012). arXiv:1112.3068 [hep-ph]

    Article  ADS  Google Scholar 

  5. A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi, J. Quevillon, Phys. Lett. B 708, 162 (2012). arXiv:1112.3028 [hep-ph]

    Article  ADS  Google Scholar 

  6. L.J. Hall, D. Pinner, J.T. Ruderman, J. High Energy Phys. 1204, 131 (2012). arXiv:1112.2703 [hep-ph]

    Article  ADS  Google Scholar 

  7. U. Ellwanger, J. High Energy Phys. 1203, 044 (2012). arXiv:1112.3548 [hep-ph]

    Article  ADS  Google Scholar 

  8. H.E. Haber, R. Hempfling, Phys. Rev. Lett. 66, 1815 (1991)

    Article  ADS  Google Scholar 

  9. Y. Okada, M. Yamaguchi, T. Yanagida, Prog. Theor. Phys. 85, 1 (1991)

    Article  ADS  Google Scholar 

  10. J.R. Ellis, G. Ridolfi, F. Zwirner, Phys. Lett. B 262, 477 (1991)

    Article  ADS  Google Scholar 

  11. M.S. Carena, J.R. Espinosa, M. Quiros, C.E.M. Wagner, Phys. Lett. B 355, 209 (1995). arXiv:hep-ph/9504316

    Article  ADS  Google Scholar 

  12. M.S. Carena, M. Quiros, C.E.M. Wagner, Nucl. Phys. B 461, 407 (1996). arXiv:hep-ph/9508343

    Article  ADS  Google Scholar 

  13. H.E. Haber, R. Hempfling, A.H. Hoang, Z. Phys. C 75, 539 (1997). arXiv:hep-ph/9609331

    Article  Google Scholar 

  14. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Rev. D 58, 091701 (1998). arXiv:hep-ph/9803277

    Article  ADS  Google Scholar 

  15. S. Heinemeyer, W. Hollik, G. Weiglein, Phys. Lett. B 440, 296 (1998). arXiv:hep-ph/9807423

    Article  ADS  Google Scholar 

  16. S. Heinemeyer, W. Hollik, G. Weiglein, Eur. Phys. J. C 9, 343 (1999). arXiv:hep-ph/9812472

    ADS  Google Scholar 

  17. J.R. Espinosa, R.J. Zhang, J. High Energy Phys. 0003, 026 (2000). arXiv:hep-ph/9912236

    Article  ADS  Google Scholar 

  18. J.R. Espinosa, R.J. Zhang, Nucl. Phys. B 586, 3 (2000). arXiv:hep-ph/0003246

    Article  ADS  Google Scholar 

  19. M. Carena, H.E. Haber, S. Heinemeyer, W. Hollik, C.E.M. Wagner, G. Weiglein, Nucl. Phys. B 580, 29 (2000). arXiv:hep-ph/0001002

    Article  ADS  Google Scholar 

  20. G. Degrassi, P. Slavich, F. Zwirner, Nucl. Phys. B 611, 403 (2001). arXiv:hep-ph/0105096

    Article  ADS  Google Scholar 

  21. A. Brignole, G. Degrassi, P. Slavich, F. Zwirner, Nucl. Phys. B 631, 195 (2002). arXiv:hep-ph/0112177

    Article  ADS  Google Scholar 

  22. S.P. Martin, Phys. Rev. D 67, 095012 (2003). arXiv:hep-ph/0211366

    Article  ADS  Google Scholar 

  23. S.P. Martin, Phys. Rev. D 75, 055005 (2007). hep-ph/0701051

    Article  ADS  Google Scholar 

  24. R.V. Harlander, P. Kant, L. Mihaila, M. Steinhauser, Phys. Rev. Lett. 100, 191602 (2008). Phys. Rev. Lett., 101, 039901, 2008. arXiv:0803.0672 [hep-ph]

    Article  ADS  Google Scholar 

  25. P. Kant, R.V. Harlander, L. Mihaila, M. Steinhauser, J. High Energy Phys. 1008, 104 (2010). arXiv:1005.5709 [hep-ph]

    Article  ADS  Google Scholar 

  26. G. Degrassi, S. Di Vita, J. Elias-Miro, J.R. Espinosa, G.F. Giudice, G. Isidori, A. Strumia, J. High Energy Phys. 1208, 098 (2012). arXiv:1205.6497 [hep-ph]

    Article  ADS  Google Scholar 

  27. S. Heinemeyer, M.J. Herrero, S. Penaranda, A.M. Rodriguez-Sanchez, J. High Energy Phys. 1105, 063 (2011). arXiv:1007.5512 [hep-ph]

    Article  ADS  Google Scholar 

  28. Y. Grossman, H.E. Haber, Phys. Rev. Lett. 78, 3438 (1997). hep-ph/9702421

    Article  ADS  Google Scholar 

  29. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, T. Yanagida, Phys. Lett. B 357, 579 (1995). hep-ph/9501407

    Article  ADS  Google Scholar 

  30. J. Hisano, T. Moroi, K. Tobe, M. Yamaguchi, T. Yanagida, Phys. Rev. D 53, 2442 (1996). hep-ph/9510309

    Article  ADS  Google Scholar 

  31. J.R. Ellis, J. Hisano, M. Raidal, Y. Shimizu, Phys. Rev. D 66, 115013 (2002). hep-ph/0206110

    Article  ADS  Google Scholar 

  32. A. Masiero, S.K. Vempati, O. Vives, New J. Phys. 6, 202 (2004). hep-ph/0407325

    Article  ADS  Google Scholar 

  33. E. Arganda, A.M. Curiel, M.J. Herrero, D. Temes, Phys. Rev. D 71, 035011 (2005). hep-ph/0407302

    Article  ADS  Google Scholar 

  34. J.R. Ellis, O. Lebedev, Phys. Lett. B 653, 411 (2007). arXiv:0707.3419 [hep-ph]

    Article  ADS  Google Scholar 

  35. A. Dedes, H.E. Haber, J. Rosiek, J. High Energy Phys. 0711, 059 (2007). arXiv:0707.3718 [hep-ph]

    Article  MathSciNet  ADS  Google Scholar 

  36. M. Asano, T. Kubo, S. Matsumoto, M. Senami, Phys. Rev. D 80, 095017 (2009). arXiv:0807.4922 [hep-ph]

    Article  ADS  Google Scholar 

  37. M. Hirsch, F.R. Joaquim, A. Vicente, J. High Energy Phys. 1211, 105 (2012). arXiv:1207.6635 [hep-ph]

    Article  ADS  Google Scholar 

  38. W. Wang, J.M. Yang, L.L. You. arXiv:1303.6465 [hep-ph]

  39. J.F. Gunion, H.E. Haber, Nucl. Phys. B 278, 449 (1986)

    Article  ADS  Google Scholar 

  40. A. Dobado, M.J. Herrero, S. Penaranda, Eur. Phys. J. C 7, 313 (1999). hep-ph/9710313

    ADS  Google Scholar 

  41. A. Dobado, M.J. Herrero, S. Penaranda, Eur. Phys. J. C 12, 673 (2000). hep-ph/9903211

    Article  ADS  Google Scholar 

  42. M.S. Berger, Phys. Rev. D 41, 225 (1990)

    Article  ADS  Google Scholar 

  43. W. Siegel, Phys. Lett. B 84, 193 (1979)

    Article  MathSciNet  ADS  Google Scholar 

  44. D.M. Capper, D.R.T. Jones, P. van Nieuwenhuizen, Nucl. Phys. B 167, 479 (1980). For a recent review, see T. Jones, PoS LL 2012, 011 (2012)

    Article  ADS  Google Scholar 

  45. S. Weinberg, Phys. Lett. B 91, 51 (1980)

    Article  ADS  Google Scholar 

  46. A. Freitas, D. Stockinger, Phys. Rev. D 66, 095014 (2002). hep-ph/0205281

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge fruitful discussions with Sven Heinemeyer and Maria Herrero concerning the work of Ref. [27]. We are also grateful to the anonymous referee whose critique of earlier versions of this manuscript resulted in significant improvements to the presentation. PD and HEH are supported in part by U.S. Department of Energy grant number DE-FG02-04ER41286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Draper.

Appendix: Approximate renormalized self-energies and tadpoles

Appendix: Approximate renormalized self-energies and tadpoles

It is convenient to have analytic approximations for the self-energy functions and tadpoles in order to see how the terms sensitive to the seesaw scale explicitly cancel in the expressions for the Higgs masses [Eqs. (2.18) and (2.19)]. Following Ref. [27], we perform a series expansion in powers of \(m_{D}^{2}\). At \(\mathcal{O}(m_{D}^{0})\), the contributions are insensitive to the seesaw scale. At \(\mathcal{O}(m_{D}^{4})\), each self-energy scales as \(m_{M}^{-2}\), exhibiting decoupling independently, in agreement with Ref. [27]. In contrast, decoupling occurs in the \(\mathcal{O}(m_{D}^{2})\) terms due to non-trivial cancellations among the various terms in Eqs. (2.18) and (2.19).

Below we give the \(\mathcal{O}(m_{D}^{2})\) contributions to the real parts of the self-energy functions and tadpolesFootnote 7 in d-spacetime dimensions using dimensional regularization, expanded to leading order with respect to the mass hierarchy

$$ \bigl\{m_Z^2,p^2,m_A^2,m_H^2 \bigr\}\ll m_S^2\ll m_M^2. $$
(A.1)

It is convenient to adopt the shorthand notation

$$ \log\widetilde{Q}^2\equiv\frac{1}{\epsilon}-\gamma+\log\bigl(4\pi Q^2\bigr), $$
(A.2)

where Q is the renormalization scale, \(\epsilon\equiv2-\frac{1}{2} d\) and γ is Euler’s constant. The \(\mathcal{O}(m_{D}^{2})\) contribution to Σ hh (p 2) at leading order in the mass hierarchy [cf. Eq. (A.1)] is given by

$$\begin{aligned} \varSigma_{hh}\bigl(p^2\bigr)&= \frac{g^2 m_D^2}{64 \pi^2 c_W^2 m_Z^2} \biggl\{ \frac{2\cos^2\alpha }{\sin^2\beta} \biggl[2m_S^2 \log\frac{m_M^2}{\widetilde{Q}^2} \\ &\quad {}+ \bigl(m_Z^2-p^2\bigr) \biggl(1-\log\frac{m_M^2}{\widetilde{Q}^2} \biggr) \biggr] \\ &\quad {}+ m_Z^2 \biggl(1-\log\frac{m_M^2}{\widetilde{Q}^2} \biggr) \bigl[ \cos^2\alpha\bigl(4-3 \cot^2\beta\bigr) \\ &\quad {}+2 \sin2 \alpha \cot\beta-\sin^2\alpha\bigr] \biggr\}, \end{aligned}$$
(A.3)

where p is the incoming four momentum. Likewise, Σ HH (p 2) is obtained by making the replacement \(\alpha\to\alpha-\frac{1}{2}\pi\) in Eq. (A.3),

$$\begin{aligned} \varSigma_{HH}\bigl(p^2\bigr)&= \frac{g^2 m_D^2}{64 \pi^2 c_W^2 m_Z^2} \biggl\{ \frac{2\sin^2\alpha }{\sin^2\beta} \biggl[2m_S^2 \log\frac{m_M^2}{\widetilde{Q}^2} \\ &\quad {}+\bigl(m_Z^2-p^2\bigr) \biggl(1-\log\frac{m_M^2}{\widetilde{Q}^2} \biggr) \biggr] \\ &\quad {}+ m_Z^2 \biggl(1-\log\frac{m_M^2}{\widetilde{Q}^2} \biggr) \bigl[ \sin^2\alpha\bigl(4-3 \cot^2\beta\bigr) \\ &\quad {}-2 \sin2 \alpha \cot\beta-\cos^2\alpha\bigr] \biggr\}. \end{aligned}$$
(A.4)

For completeness, we provide the \(\mathcal{O}(m_{D}^{2})\) contribution to the real parts of all the other relevant self-energy functions [at leading order in the mass hierarchy, Eq. (A.1)],

$$\begin{aligned} \begin{aligned} &\varSigma_{ZZ}\bigl(m_Z^2\bigr)= \frac{g^2 m_D^2}{64 \pi^2 c_W^2 m_Z^2}2m_Z^2 \biggl(1-\log \frac{m_M^2}{\widetilde{Q}^2} \biggr), \\ &\varSigma_{AA}\bigl(m_A^2\bigr)= \frac{g^2 m_D^2}{64 \pi^2 c_W^2 m_Z^2} \biggl\{\frac{\cos2 \beta}{\sin ^2\beta} \biggl[2 m_S^2 \log\frac{m_M^2}{\widetilde{Q}^2}\\ &\hphantom{\varSigma_{AA}\bigl(m_A^2\bigr)=}\quad {}- \bigl(m_A^2 +m_Z^2 \bigr) \biggl(1-\log\frac{m_M^2}{\widetilde{Q}^2} \biggr) \biggr] \\ &\hphantom{\varSigma_{AA}\bigl(m_A^2\bigr)=}\quad {}+\frac{1}{\sin^2\beta} \biggl[2 m_S^2 \log\frac{m_M^2}{\widetilde{Q}^2}-m_A^2\\ &\hphantom{\varSigma_{AA}\bigl(m_A^2\bigr)=}\quad {}\times \biggl(1-\log \frac{m_M^2}{\widetilde{Q}^2} \biggr) \biggr]\\ &\hphantom{\varSigma_{AA}\bigl(m_A^2\bigr)=}\quad {}+2 \cos2 \beta m_Z^2 \biggl(1-\log\frac{m_M^2}{\widetilde{Q}^2} \biggr) \biggr\} , \\ &\varSigma_{GG}(0)=\frac{g^2 m_D^2}{64 \pi^2 c_W^2 m_Z^2} \biggl\{ 4 m_S^2 \log\frac{m_M^2}{\widetilde{Q}^2}\\ &\hphantom{\varSigma_{GG}(0)=}\quad {}-2 \cos2 \beta m_Z^2 \biggl(1- \log\frac{m_M^2}{\widetilde{Q}^2} \biggr) \biggr\}, \\ &\frac{A_h}{\sqrt{2}v}= \frac{g^2 m_D^2}{64 \pi^2 c_W^2 m_Z^2} \biggl \{ \frac{\cos\alpha}{\sin\beta} \biggl[4 m_S^2 \log\frac{m_M^2}{\widetilde{Q}^2}\\ &\hphantom{\frac{A_h}{\sqrt{2}v}=}\quad {}-m_Z^2 \biggl(1-\log\frac{m_M^2}{\widetilde{Q}^2} \biggr) \biggr] \\ &\hphantom{\frac{A_h}{\sqrt{2}v}=}\quad {}+m_Z^2 (\sin\alpha\cos\beta+3 \cos\alpha\sin\beta)\\ &\hphantom{\frac{A_h}{\sqrt{2}v}=}\quad {}\times \biggl(1-\log\frac{m_M^2}{\widetilde{Q}^2} \biggr) \biggr\}, \\ &\frac{A_H}{\sqrt{2}v}= \frac{g^2 m_D^2}{64 \pi^2 c_W^2 m_Z^2} \biggl \{\frac{\sin\alpha}{\sin\beta} \biggl[4 m_S^2 \log\frac{m_M^2}{\widetilde{Q}^2}\\ &\hphantom{\frac{A_H}{\sqrt{2}v}=}\quad {}- m_Z^2 \biggl(1-\log\frac{m_M^2}{\widetilde{Q}^2} \biggr) \biggr] \\ &\hphantom{\frac{A_H}{\sqrt{2}v}=}\quad {}+m_Z^2 (3 \sin\alpha\sin\beta- \cos\alpha\cos\beta)\\ &\hphantom{\frac{A_H}{\sqrt{2}v}=}\quad {}\times \biggl(1-\log\frac{m_M^2}{\widetilde{Q}^2} \biggr) \biggr\}. \end{aligned} \end{aligned}$$
(A.5)

Next, we compute the \(\mathcal{O}(m_{D}^{2})\) contributions [at leading order in the mass hierarchy, Eq. (A.1)] to the counterterm δtanβ in the various renormalization schemes. In the HM scheme, δtanβ is given by Eq. (2.26). Using the above expressions for the self-energy functions, along with Eq. (2.20) and the following tree-level relations (cf. Eq. (A.20) of Ref. [39]):

$$ \begin{aligned} &m_{ht}^2=-\frac{m_Z^2\cos2\beta\sin(\beta+\alpha)}{\sin(\beta-\alpha )},\\ &m_{Ht}^2=\frac{m_Z^2\cos2\beta\cos(\beta+\alpha)}{\cos(\beta-\alpha)}, \end{aligned} $$
(A.6)

we obtain after considerable simplification,

$$\begin{aligned} \delta\tan\beta_{{\rm HM}}&= \delta\tan\beta_{\overline{\rm DEC}} \\ &=\frac {g^2m_D^2}{32\pi^2c_W^2m_Z^2\sin2\beta} \\ &\quad {}\times \biggl({\frac{1}{\epsilon}-\gamma+\log{4\pi}-\log{\frac{m_M^2}{Q^2}}+1} \biggr) . \end{aligned}$$
(A.7)

Note that the \(\mathcal{O}(m_{D}^{2})\) contributions to the counterterm δtanβ in the HM and DEC schemes are equivalent, in light of the absence of non-decoupling terms in Eq. (3.8). Indeed, the \(\mathcal{O}(m_{D}^{2})\) contribution to δtanβ is independent of the tree-level Higgs mixing angle α. Although this result is obvious in the DEC scheme (which is defined via Higgs wave function counterterms that are evaluated at α=0), the cancellation of the α-dependence in the \(\mathcal{O}(m_{D}^{2})\) contribution to \(\delta\tan\beta_{\rm{HM}}\) [defined in Eq. (2.26)] is highly non-trivial.

In contrast, in the \(\overline{\rm DR}\) scheme only the ϵ −1γ+log4π is retained, so that the corresponding \(\mathcal{O}(m_{D}^{2})\) contribution is simply

$$\begin{aligned} \delta\tan\beta_{\overline{\rm DR}}&=\frac{g^2m_D^2}{32\pi ^2c_W^2m_Z^2\sin2\beta} \biggl(\frac{1}{\epsilon}- \gamma+\log{4\pi} \biggr). \end{aligned}$$
(A.8)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Draper, P., Haber, H.E. Decoupling of the right-handed neutrino contribution to the Higgs mass in supersymmetric models. Eur. Phys. J. C 73, 2522 (2013). https://doi.org/10.1140/epjc/s10052-013-2522-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2522-7

Keywords

Navigation