Skip to main content
Log in

Neutral-current Drell–Yan with combined QCD and electroweak corrections in the POWHEG BOX

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Following recent work on the combination of electroweak and strong radiative corrections to single W-boson hadroproduction in the POWHEG BOX framework, we generalize the above treatment to cover the neutral-current Drell–Yan process. According to the POWHEG method, we combine both the next-to-leading order (NLO) electroweak and the QED multiple photon corrections with the native NLO and Parton Shower QCD contributions. We show comparisons with the predictions of the electroweak generator HORACE, to validate the reliability and accuracy of the approach. We also present phenomenological results obtained with the new tool for physics studies at the LHC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. See http://powhegbox.mib.infn.it for an updated list of all available processes.

  2. Further studies on combining QCD and EW corrections to W/Z hadroproduction are described in Refs. [2127].

  3. We use PHOTOS with leading log kernels, i.e. without process-dependent matrix element corrections already included in our approach in the exact NLO calculation.

  4. Partial results exist in the literature and are given by the one-loop EW corrections to W/Z+jet production at finite transverse momentum [3538], NLO QCD corrections to the W/Z+γ process [3941] and two-loop virtual \(O(\alpha_{\rm em} \alpha_{s})\) corrections to the NC DY [42]. However, the complete and non-trivial combination of all the above substructures is still unavailable.

  5. Note that HORACE implements completely independent EW form factors and real photon matrix elements, computed in the mass regularization scheme.

  6. The CKM mixing matrix is set to the identity matrix in the calculation of EW loop corrections.

  7. Note that we do not take into account in our calculation the contribution due to real radiation of massive gauge bosons, which is known [47, 48] to partially compensate the negative virtual Sudakov-like corrections.

  8. We used the data available at the HepData repository http://hepdata.cedar.ac.uk.

References

  1. S. Frixione, B.R. Webber, J. High Energy Phys. 0206, 029 (2002). hep-ph/0204244

    Article  ADS  Google Scholar 

  2. P. Nason, J. High Energy Phys. 0411, 040 (2004). hep-ph/0409146

    Article  ADS  Google Scholar 

  3. S. Frixione, P. Nason, C. Oleari, J. High Energy Phys. 0711, 070 (2007). arXiv:0709.2092 [hep-ph]

    Article  ADS  Google Scholar 

  4. P. Nason, B. Webber, Annu. Rev. Nucl. Part. Sci. 62, 187 (2012). arXiv:1202.1251 [hep-ph]

    Article  ADS  Google Scholar 

  5. L. Barzè, G. Montagna, P. Nason, O. Nicrosini, F. Piccinini, J. High Energy Phys. 1204, 037 (2012). arXiv:1202.0465 [hep-ph]

    Article  ADS  Google Scholar 

  6. C. Bernaciak, D. Wackeroth, Phys. Rev. D 85, 093003 (2012). arXiv:1201.4804 [hep-ph]

    Article  ADS  Google Scholar 

  7. S. Alioli, P. Nason, C. Oleari, E. Re, J. High Energy Phys. 1006, 043 (2010). arXiv:1002.2581 [hep-ph]

    Article  ADS  Google Scholar 

  8. S. Catani, L. Cieri, G. Ferrera, D. de Florian, M. Grazzini, Phys. Rev. Lett. 103, 082001 (2009). arXiv:0903.2120 [hep-ph]

    Article  ADS  Google Scholar 

  9. K. Melnikov, F. Petriello, Phys. Rev. D 74, 114017 (2006). hep-ph/0609070

    Article  ADS  Google Scholar 

  10. R. Gavin, Y. Li, F. Petriello, S. Quackenbush, Comput. Phys. Commun. 182, 2388 (2011). arXiv:1011.3540 [hep-ph]

    Article  ADS  Google Scholar 

  11. C.M. Carloni Calame, G. Montagna, O. Nicrosini, A. Vicini, J. High Energy Phys. 0612, 016 (2006). hep-ph/0609170

    Article  ADS  Google Scholar 

  12. C.M. Carloni Calame, G. Montagna, O. Nicrosini, A. Vicini, J. High Energy Phys. 0710, 109 (2007). arXiv:0710.1722 [hep-ph]

    Article  ADS  Google Scholar 

  13. U. Baur, S. Keller, W.K. Sakumoto, Phys. Rev. D 57, 199 (1998). hep-ph/9707301

    Article  ADS  Google Scholar 

  14. U. Baur, O. Brein, W. Hollik, C. Schappacher, D. Wackeroth, Phys. Rev. D 65, 033007 (2002). hep-ph/0108274

    Article  ADS  Google Scholar 

  15. A. Arbuzov, D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, G. Nanava, R. Sadykov, Eur. Phys. J. C 54, 451 (2008). arXiv:0711.0625 [hep-ph]

    Article  ADS  Google Scholar 

  16. A. Andonov, A. Arbuzov, D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, V. Kolesnikov, R. Sadykov, Comput. Phys. Commun. 181, 305 (2010). arXiv:0812.4207 [physics.comp-ph]

    Article  ADS  MATH  Google Scholar 

  17. D. Bardin, S. Bondarenko, P. Christova, L. Kalinovskaya, L. Rumyantsev, A. Sapronov, W. von Schlippe, JETP Lett. 96, 285 (2012). arXiv:1207.4400 [hep-ph]

    Article  ADS  Google Scholar 

  18. S.G. Bondarenko, A.A. Sapronov, NLO EW and QCD proton–proton cross section calculations with mcsanc-v1.01. arXiv:1301.3687 [hep-ph]

  19. S. Dittmaier, M. Huber, J. High Energy Phys. 1001, 060 (2010). arXiv:0911.2329 [hep-ph]

    Article  ADS  Google Scholar 

  20. Y. Li, F. Petriello, Phys. Rev. D 86, 094034 (2012). arXiv:1208.5967 [hep-ph]

    Article  ADS  Google Scholar 

  21. Q.-H. Cao, C.P. Yuan, Phys. Rev. Lett. 93, 042001 (2004). hep-ph/0401026

    Article  ADS  Google Scholar 

  22. N.E. Adam, V. Halyo, S.A. Yost, J. High Energy Phys. 0805, 062 (2008). arXiv:0802.3251 [hep-ph]

    Article  Google Scholar 

  23. N.E. Adam, V. Halyo, S.A. Yost, W. Zhu, J. High Energy Phys. 0809, 133 (2008). arXiv:0808.0758 [hep-ph]

    Article  ADS  Google Scholar 

  24. G. Balossini, G. Montagna, C.M. Carloni Calame, M. Moretti, M. Treccani, O. Nicrosini, F. Piccinini, A. Vicini, Acta Phys. Pol. B 39, 1675 (2008). arXiv:0805.1129 [hep-ph]

    ADS  Google Scholar 

  25. G. Balossini, G. Montagna, C.M. Carloni Calame, M. Moretti, O. Nicrosini, F. Piccinini, M. Treccani, A. Vicini, J. High Energy Phys. 1001, 013 (2010). arXiv:0907.0276 [hep-ph]

    Article  ADS  Google Scholar 

  26. P. Richardson, R.R. Sadykov, A.A. Sapronov, M.H. Seymour, P.Z. Skands, J. High Energy Phys. 1206, 090 (2012). arXiv:1011.5444 [hep-ph]

    Article  ADS  Google Scholar 

  27. S. Yost, V. Halyo, M. Hejna, B.F.L. Ward, HERWIRI2: CEEX electroweak corrections in a hadronic MC. arXiv:1201.5906 [hep-ph]

  28. S. Frixione, Z. Kunszt, A. Signer, Nucl. Phys. B 467, 399 (1996). hep-ph/9512328

    Article  ADS  Google Scholar 

  29. S. Dittmaier, Nucl. Phys. B 675, 447 (2003). hep-ph/0308246

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. A. Denner, S. Dittmaier, Nucl. Phys. B 844, 199 (2011). arXiv:1005.2076 [hep-ph]

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. S. Dittmaier, M. Kramer, Phys. Rev. D 65, 073007 (2002). hep-ph/0109062

    Article  ADS  Google Scholar 

  32. A. Denner, S. Dittmaier, M. Roth, L.H. Wieders, Nucl. Phys. B 724, 247 (2005). Erratum-ibid. B 854, 504 (2012). hep-ph/0505042

    Article  ADS  Google Scholar 

  33. A. Denner, S. Dittmaier, Nucl. Phys. B, Proc. Suppl. 160, 22 (2006). hep-ph/0605312

    Article  ADS  Google Scholar 

  34. P. Golonka, Z. Was, Eur. Phys. J. C 45, 97 (2006). hep-ph/0506026

    Article  ADS  Google Scholar 

  35. J.H. Kuhn, A. Kulesza, S. Pozzorini, M. Schulze, Phys. Lett. B 651, 160 (2007). hep-ph/0703283 [hep-ph]

    Article  ADS  Google Scholar 

  36. J.H. Kuhn, A. Kulesza, S. Pozzorini, M. Schulze, Nucl. Phys. B 797, 27 (2008). arXiv:0708.0476 [hep-ph]

    Article  ADS  Google Scholar 

  37. W. Hollik, T. Kasprzik, B.A. Kniehl, Nucl. Phys. B 790, 138 (2008). arXiv:0707.2553 [hep-ph]

    Article  ADS  Google Scholar 

  38. A. Denner, S. Dittmaier, T. Kasprzik, A. Muck, J. High Energy Phys. 0908, 075 (2009). arXiv:0906.1656 [hep-ph]

    Article  ADS  Google Scholar 

  39. L.J. Dixon, Z. Kunszt, A. Signer, Nucl. Phys. B 531, 3 (1998). hep-ph/9803250

    Article  ADS  Google Scholar 

  40. D. De Florian, A. Signer, Eur. Phys. J. C 16, 105 (2000). hep-ph/0002138

    Article  ADS  Google Scholar 

  41. J.M. Campbell, R.K. Ellis, C. Williams, J. High Energy Phys. 1107, 018 (2011). arXiv:1105.0020 [hep-ph]

    Article  ADS  Google Scholar 

  42. W.B. Kilgore, C. Sturm, Phys. Rev. D 85, 033005 (2012). arXiv:1107.4798 [hep-ph]

    Article  ADS  Google Scholar 

  43. A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur. Phys. J. C 39, 155 (2005). hep-ph/0411040

    Article  ADS  Google Scholar 

  44. C. Buttar, J. D’Hondt, M. Kramer, G. Salam, M. Wobisch, N.E. Adam, V. Adler, A. Arbuzov et al., Standard model handles and candles working group: tools and jets summary report. arXiv:0803.0678 [hep-ph]

  45. C.M. Carloni Calame, G. Montagna, O. Nicrosini, M. Treccani, J. High Energy Phys. 0505, 019 (2005). hep-ph/0502218

    Article  ADS  Google Scholar 

  46. T. Sjostrand, S. Mrenna, P.Z. Skands, J. High Energy Phys. 0605, 026 (2006). hep-ph/0603175

    Article  ADS  Google Scholar 

  47. U. Baur, Phys. Rev. D 75, 013005 (2007). hep-ph/0611241

    Article  ADS  Google Scholar 

  48. G. Bell, J.H. Kuhn, J. Rittinger, Eur. Phys. J. C 70, 659 (2010). arXiv:1004.4117 [hep-ph]

    Article  ADS  Google Scholar 

  49. G. Aad et al. (ATLAS Collaboration), Phys. Lett. B 705, 415 (2011). arXiv:1107.2381 [hep-ex]

    Article  ADS  Google Scholar 

  50. S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. D 85, 032002 (2012). arXiv:1110.4973 [hep-ex]

    Article  ADS  Google Scholar 

  51. T. Sjostrand, S. Mrenna, P.Z. Skands, Comput. Phys. Commun. 178, 852 (2008). arXiv:0710.3820 [hep-ph]

    Article  ADS  Google Scholar 

  52. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Eur. Phys. J. C 63, 189 (2009). arXiv:0901.0002 [hep-ph]

    Article  ADS  Google Scholar 

  53. A.B. Arbuzov, R.R. Sadykov, J. Exp. Theor. Phys. 106, 488 (2008). arXiv:0707.0423 [hep-ph]

    Article  ADS  Google Scholar 

  54. S. Brensing, S. Dittmaier, M. Kramer, A. Muck, Phys. Rev. D 77, 073006 (2008). arXiv:0710.3309 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to various colleagues of the LHC and Tevatron communities for interest in our work and many useful discussions. This work was supported in part by the Research Executive Agency (REA) of the European Union under the Grant Agreement number PITN-GA-2010-264564 (LHCPhenoNet), and by the Italian Ministry of University and Research under the PRIN program 2010-2011. The work of L.B. is supported by the ERC grant 291377, “LHCtheory—Theoretical predictions and analyses of LHC physics: advancing the precision frontier”. F.P. would like to thank the CERN PH-TH Department for partial support and hospitality during several stages of the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Montagna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barzè, L., Montagna, G., Nason, P. et al. Neutral-current Drell–Yan with combined QCD and electroweak corrections in the POWHEG BOX. Eur. Phys. J. C 73, 2474 (2013). https://doi.org/10.1140/epjc/s10052-013-2474-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjc/s10052-013-2474-y

Keywords

Navigation